World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: http://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2019, 7(2), 172-178
DOI: 10.12691/wjce-7-2-17
Open AccessSpecial Issue

Teaching Sustainability in the Chemistry Classroom: Exploring Fuel Cells in Simple Hands-on Experiments with Hydrogen, Sugar and Alcohol

Rebecca Grandrath1 and Claudia Bohrmann-Linde1,

1Department of Chemistry Education, University of Wuppertal, Gaußstr, 20, 42119 Wuppertal, Germany

Pub. Date: April 11, 2019

Cite this paper:
Rebecca Grandrath and Claudia Bohrmann-Linde. Teaching Sustainability in the Chemistry Classroom: Exploring Fuel Cells in Simple Hands-on Experiments with Hydrogen, Sugar and Alcohol. World Journal of Chemical Education. 2019; 7(2):172-178. doi: 10.12691/wjce-7-2-17

Abstract

Energy transition is one of the main global challenges of this century. To realize it and reach the UN´s ecological sustainability goals the topic sustainable energy and different ways of approaching energy transition have to be taught at school. As fuel cells can play a key role in the energy turnaround, they should be an integral part in chemistry education. Here we present a series of hands-on experiments focusing on alkaline, microbial and direct methanol fuel cells to help pupils understand how fuel cells work.

Keywords:
alkaline fuel cell direct methanol fuel cell microbial fuel cell yeast low-cost materials hands-on experiments digital learning tool education for sustainable development energy transition sustainability

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 14

References:

[1]  https://sustainabledevelopment.un.org/?menu=1300. 06.01.2019.
 
[2]  https://www.globalgoals.org/resources#icons-for-the-goals. 01.12.2018.
 
[3]  Transforming our world: the 2030 Agenda for Sustainable Development, A/RES/70/1, 21.10.2015.
 
[4]  Fang, T. P., Halim, L., Ramli Wan Daud, W., Shahbudin Masdar, M. (2017). How ready is renewable energy? A review on renewable energy and fuel cell teaching in schools. 7th World Engineering Education Forum, WEEF 2017, 236-244.
 
[5]  Kurzweil, P., Schmid, O. (2016). Brennstoffzellentechnik. Grundlagen, Materialien, Anwendungen, Gaserzeugung, 3. Aufl. Springer Vieweg, Wiesbaden.
 
[6]  Vanussi Melo Guaitolini, S., Yahyaoui, I., Fardin, J. F., Frizera Encarnacao, L., Tadeo, F. (2018). A review of fuel cell and energy cogeneration technologies. 9th International Renewable Energy Congress (IREC), 1-6.
 
[7]  Tausch, M., Wachtendonk, M. von (Hrsg.) (2011). Chemie 2000+. Sekundarstufe I: Gesamtband. Nordrhein-Westfalen, 2. Aufl. Buchner, Bamberg.
 
[8]  Tausch, M., Wachtendonk, M. von (Hrsg.) (2007). Chemie 2000+. Sekundarstufe II: Gesamtband. Nordrhein-Westfalen. Buchner, Bamberg.
 
[9]  Bohrmann-Linde, C. (2004). Von der Elektrolysezelle zur Leuchtdiode - Elektrolumineszenz im Chemieunterricht. Praxis der Naturwissenschaften - Chemie in der Schule 3/53, 12-19.
 
[10]  Ryan, L. (2015). Advanced Chemistry for you, 2. Aufl. OUP, Oxford.
 
[11]  Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology 40/17, 5181-5192.
 
[12]  Kumar, R., Singh, L., Zularisam, A. W., Hai, F. I. (2018). Microbial fuel cell is emerging as a versatile technology. A review on its possible applications, challenges and strategies to improve the performances. Int J Energy Res 42/2, 369-394.
 
[13]  Santoro, C., Arbizzani, C., Erable, B., Ieropoulos, I. (2017). Microbial fuel cells. From fundamentals to applications. A review. Journal of power sources 356, 225-244.
 
[14]  Zückert, R., Bohrmann-Linde, C. (2018). Die biologische Brennstoffzelle im Chemieunterricht - Einfache Experimente mit kostengünstigen Materialien. CHEMKON accepted.
 
[15]  Silveira, G., Ikegaki, M., Schneedorf, J. M. (2016). A low-cost yeast-based biofuel cell. An educational green approach. Green Chemistry Letters and Reviews 10/1, 32-41.
 
[16]  Babanova, S., Hubenova, Y., Mitov, M. (2011). Influence of artificial mediators on yeast-based fuel cell performance. Journal of bioscience and bioengineering 112/4, 379-387.
 
[17]  Bennetto, H. P. (1990). Electricity generation by microorganisms. Biotechnology Education 1/4, 163-168.
 
[18]  Khuhro, A. A., Ali, Y., Najam-Uddin, M., Khan, S. (2018). A Technological, Economical and Efficiency Review of Direct Methanol Fuel Cell. iCoMET 2018, 1-4.
 
[19]  Bertau, M., Räuchle, K., Offermanns, H. (2015). Methanol - die Basischemikalie. Chemie in unserer Zeit 49/5, 312-329.
 
[20]  Olah, G. A., Goeppert, A., Prakash, G. K. S. (2018). Beyond Oil and Gas. The Methanol Economy, 3. Aufl. John Wiley & Sons Incorporated, Newark.
 
[21]  Sahu, O. P., Basu, S. (2014). Direct Alcohol Alkaline Fuel Cell as Future Prospectus. Advanced Energy: An International Journal (AEIJ) 1/1, 43-52.
 
[22]  Jauch, L. (2018). Interactive ppt-tool on fuel cells (Thesis University of Tuebingen). http://chemiedidaktik.uni-wuppertal.de/index.php?id=4214&L=1 (22.03.2019).