World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: http://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2017, 5(5), 153-157
DOI: 10.12691/wjce-5-5-2
Open AccessArticle

Ugi Four-component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories

Mariana Ingold1, Lucia Colella1, Rosina Dapueto1, Gloria. V. López1 and Williams Porcal1

1Department of Organic Chemistry, Faculty of Chemistry, University of the Republic, Montevideo, Uruguay

Pub. Date: August 29, 2017

Cite this paper:
Mariana Ingold, Lucia Colella, Rosina Dapueto, Gloria. V. López and Williams Porcal. Ugi Four-component Reaction (U-4CR) Under Green Conditions Designed for Undergraduate Organic Chemistry Laboratories. World Journal of Chemical Education. 2017; 5(5):153-157. doi: 10.12691/wjce-5-5-2

Abstract

Multicomponent reactions (MCRs) are a green strategy in which a collection of molecules with a great diversity are generated with a minimum of synthetic effort, time and by-products formation. The Ugi Multi-component reaction is a chemical reaction in which an aldehyde, an amine, a carboxylic acid and an isocyanide react to form a α-bisamide. In this work, we use the Ugi reaction, as an example of MCRs, to approach organic chemistry undergraduate students to sustainable reactions. This reaction can be carried out under on-water or solvent-free conditions, both at room temperature as in combination with microwave irradiation or ultrasound. The advantages and limitations of the usage of Ugi reaction, under these conditions, in an organic chemistry laboratory course are discussed. In this context, we used different parameters to calculate how environmentally friendly the assayed conditions are. The Chemical Manufacturing Methods for the 21st Century Pharmaceutical Industries (CHEM21 project) were used with this objective. The present work could contribute to the teaching of ecofriendly synthetic strategies, demonstrating the scientific and academic benefits of green chemistry.

Keywords:
green chemistry solvent-free on-water microwave Multicomponent Reaction Ugi Metrics Toolkit

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 2

References:

[1]  Anastas, P.T.; Beach, E.S. Green Chemistry Education. Changing the Course of Chemistry. ACS Symposium Series; American Chemical Society: Washington, DC, 2009.
 
[2]  Moore, J.W. “What’s the Future of Chemistry?” Chem. Edu. Inter., 1. 8-10. 2000.
 
[3]  Clark, J.H. “Green chemistry: challenges and opportunities.” Green. Chem., 1. 1-8. 1999.
 
[4]  Gaich, T.; Baran, P.S. J. “Aiming for the Ideal Synthesis.” J. Org. Chem. 75. 4657-4673. 2010.
 
[5]  Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
 
[6]  Eissen, M.; Metzger, J.O. “Environmental Performance Metrics for Daily Use in Synthetic Chemistry.” Chem. Eur. J., 8. 3581-3585. 2002.
 
[7]  Linthorst, J. A. “An overview: origins and development of green chemistry” Found Chem., 12. 55-68. 2010.
 
[8]  Anastas, P., Eghbali, N. “Green Chemistry: Principles and Practice.” Chem. Soc. Rev., 39. 301-312. 2010.
 
[9]  Zhang, W.; Cue JR, BW. Green Techniques for organic synthesis and medicinal chemistry. John Wiley & Sons, Ltd. 2012.
 
[10]  Cioc, R.C.; Ruijter, E.; Orru, R.V.A. “Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis.” Green. Chem. 16. 2958-2975. 2014.
 
[11]  Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. “Multicomponent reaction design in the quest for molecular complexity and diversity.” Angew. Chem. Int. Ed., 50. 6234-6246. 2011.
 
[12]  Domling, A.; Ugi, I. “Multicomponent reaction with isocyanides.” Angew. Chem. Int. Ed., 39. 3168-3210. 2000.
 
[13]  Pirrung, M.; Das Sarma, K. “Aqueous medium effects on multi-component reactions.” Tetrahedron, 61. 11456-11472. 2005.
 
[14]  Hulme, C.; Chappeta, S.; Dietrich, J. “A simple, cheap alternative to ‘designer convertible isonitriles’ expedited with microwaves.” Tetrahedron. Lett., 50. 4054-4057. 2009.
 
[15]  Ingold, M.; López, G.V.; Porcal, W. “Green Conditions for Passerini Three-Component Synthesis of Tocopherol Analogues” ACS Sust Chem Eng, 2. 1093-1097. 2014.
 
[16]  Mercer, S.M.; Andraos, J.; Jessop, P.G. “Choosing the Greenest Synthesis: A Multivariate Metric Green Chemistry Exercise.” J. Chem. Educ., 89. 215-220. 2012.
 
[17]  Jiménez-González, C.; Constable, D.J.C.; Ponder, C.S. “Evaluating the ‘‘Greenness’’ of chemical processes and products in the pharmaceutical industry-a green metrics primer.” Chem. Soc. Rev., 41. 1485-1498. 2012.
 
[18]  Bossio, R.; Marcaccini, S.; Pepino, R. “Multicomponent Reactions. A Convenient Undergraduate Organic Chemistry Experiment.” J. Chem. Educ., 77. 382-384. 2000
 
[19]  Candeias, N.R.; Paterna, R.; Cal, P.M.S.D.; Góis, P.M.P. A Sustainable Protocol for the Aqueous Multicomponent Petasis Borono−Mannich Reaction. J. Chem. Educ. 2012, 89, 799-802.
 
[20]  Damkaci, F.; Szymaniak, A.; “Multicomponent Heterocyclic Chemistry for Undergraduate Organic Laboratory: Biginelli Reaction with Multiple Unknowns” J. Chem. Educ., 91. 943-945. 2014.
 
[21]  McElroy, C.R.; Constantinou, A.; Jones L.C.; Summerton, L.; Clark, J.H. “Towards a holistic approach to metrics for the 21st century pharmaceutical industry.” Green. Chem., 17. 3111-3121. 2015.
 
[22]  Li, Chao-Jun; Trost, B. M. “Green chemistry for chemical synthesis.” Proc. Nat. Acad. Sci., 105. 13197-13202. 2008.
 
[23]  Capello, C.; Fischer, U.; Hungerbuhler, K. “What is a green solvent? A comprehensive framework for the environmental assessment of solvents.” Green. Chem., 9. 927-934. 2007.
 
[24]  Jessop, P.G. “Searching for green solvents.” Green. Chem., 13. 1391-1398. 2011.
 
[25]  Varma, R.S. “Solvent-free organic syntheses using supported reagents and microwave irradiation.” Green. Chem., 1. 43-55. 1999.
 
[26]  Hayes, B.L. Microwave Synthesis. Chemistry at the Speed of Light. CEM Publishing 2002.
 
[27]  Cui, C.; Zhu, C.; Du, X.J.; Wang, Z.P.; Li, Z.M.; Zhao, W.G. “Ultrasound-promoted sterically congested Passerini reactions under solvent-free conditions.” Green. Chem., 14. 3157-3163. 2012.
 
[28]  Chen, D.; Sharma, S.K.; Mudhoo, A. Handbook on Applications of Ultrasound. Sonochemistry for Sustainability. CRC Press. Taylor & Francis Group 2012.
 
[29]  Narayan, S.; Muldoon, J.; Finn, M.G.; Fokin, V.V.; Kolb, H.C.; Sharpless, K.B. “On water: unique reactivity of organic compounds in aqueous suspension.” Angew. Chem. Int. Ed., 44. 3275-3279. 2005.
 
[30]  Herrera, R.P.; Marqués-López, E. Multicomponent reactions. Concept and applications for design and synthesis. John Wiley & Sons, Inc 2015.
 
[31]  Jung, Y. S.; Marcus, R. A. “On the Theory of Organic Catalysis “on Water”.” J. Am. Chem. Soc., 129. 5492-5502. 2007.