Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: http://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2019, 7(1), 41-50
DOI: 10.12691/jfnr-7-1-6
Open AccessReview Article

The Role of Diet in Maintaining Strong Brain Health by Taking the Advantage of the Gut-brain Axis

Sahithi Madireddy1 and Samskruthi Madireddy1,

1353 Tanaka Drive, San Jose, CA 95131, USA

Pub. Date: January 24, 2019

Cite this paper:
Sahithi Madireddy and Samskruthi Madireddy. The Role of Diet in Maintaining Strong Brain Health by Taking the Advantage of the Gut-brain Axis. Journal of Food and Nutrition Research. 2019; 7(1):41-50. doi: 10.12691/jfnr-7-1-6

Abstract

A healthy and diverse gut microbiota is essential for host health. Recent studies indicate that the gut microbiota play a significant role in signaling the gut-brain axis, and thereby having a significant impact on the brain, which is a part of the central nervous system (CNS). As the concept of the gut-brain-axis is now relatively well-established, attention has turned to the effects of diets on the gut-brain-axis. While functions of the gut-brain-axis have been studied, the potential impact of diet on brain health, as part of the gut-brain-axis, remains underexplored. Indeed, a limited body of evidence supports a role for diet, prebiotics, and probiotics in influencing the gut-brain-axis. This review focuses on nutrients and bio-active substances such as iron, fiber, short chain fatty acids, vitamins, polyphenols, zinc, and probiotics and their protective effects on brain health. Understanding the influence of diet on the gut-brain-axis will shed light on the conditions wherein brain health can be maintained by altering diet.

Keywords:
microbiota gut-brain axis nutrition diet brain fatty acids

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Paul, B., Barnes, S., Demark-Wahnefried, W., Morrow, C., Salvador, C., Skibola C, and Tollefsbol, T. O. “Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases”, Clin Epigenetics, 7. Oct 2015.
 
[2]  van de Wouw, M., Schellekens, H., Dinan, T.G. and Cryan, J.F. “Microbiota-Gut-Brain axis: Modulator of host metabolism and appetite”, J Nutr, 147 (5).727-745. May 2017.
 
[3]  Gaci, N., Borrel, G., Tottey, W., O'Toole, P.W. and Brugere, J.F. “Archaea and the human gut: New beginning of an old story”, World J. Gastroenterol, 20 (43). 16062-16078. Nov 2014.
 
[4]  Scarpellini, E., Ianiro, G., Attili, F., Bassanelli, C., De Santis, A. and Gasbarrini, A. “The human gut microbiota and virome: Potential therapeutic implications”, Dig Liver Dis, 47 (12). 1007-1012. Dec 2015.
 
[5]  Williamson, L.L., McKenney, E.A., Holzknecht, Z.E., Belliveau, C., Rawls, J.F., Poulton, S., Parker, W. and Bilbo, S. D. “Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection”, Brain Behav Immun, 51. 14-28. Jan 2016.
 
[6]  Takahashi, K. “Influence of bacteria on epigenetic gene control”, Cell Mol Life Sci, 71 (6). 1045-54. Mar 2014.
 
[7]  Ramakrishna, B.S. “Role of the gut microbiota in human nutrition and metabolism”, J Gastroenterol Hepatol, 28 (Suppl 4). 9-17. Dec 2013.
 
[8]  Luna, R.A., Foster, J.A. “Gut brain axis: Diet microbiota interactions and implications for modulation of anxiety and depression”, Curr Opin Biotechnol, 32. 35-41. Apr 2015.
 
[9]  Hsu, Y.J., Chiu, C.C., Li, Y.P., Huang, W.C., Huang, Y.T., Huang, C.C. and Chuang, H. L. “Effect of intestinal microbiota on exercise performance in mice”, J Strength Cond Res, 29 (2). 552-558. Feb 2015.
 
[10]  Mach, N., Berri, M., Estellé, J., Levenez, F., Lemonnier, G., Denis C., Leplat, J., Chevaleyre, C., Billon, Y., Doré, J., Rogel-Gaillard, C. and Lepage, P. “Early-life establishment of the swine gut microbiome and impact on host phenotypes”, Environ Microbiol Rep, 7 (3). 554-569. Jun 2015.
 
[11]  Sugahara, H., Odamaki, T., Hashikura, N., Abe F. and Xio, J. “Differences in folate production by bifidobacteria of different origins”, Biosci Microbiota Food Health, 34 (4). 87-93. 2015.
 
[12]  Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R. and White, B.A. “Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis”, Nat Rev Microbiol, 6 (2). 121-131. Feb 2008.
 
[13]  Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. and Pettersson, S. “Host-gut microbiota metabolic interactions”, Science, 336 (6086). 1262-1267. Jun 2012.
 
[14]  Rea, K., O'Mahony, S.M., Dinan, T.G. and Cryan, J.F. “The Role of the gastrointestinal microbiota in visceral pain”, Handb Exp Pharmacol, 239. 269-287. 2017.
 
[15]  Jameson, K.G. and Hsiao, E.Y. “Linking the gut Microbiota to a brain neurotransmitter”, Trends Neurosci, 41 (7). 413-414. Jul 2018.
 
[16]  Grochowska, M., Wojnar, M. and Radkowski, M. “The gut microbiota in neuropsychiatric disorders”, Acta Neurobiol Exp (Wars), 78 (2). 69-81. 2018.
 
[17]  Dash, S., Clarke, G., Berk, M. and Jacka, F.N. “The gut microbiome and diet in psychiatry: Focus on depression”, Curr Opin Psychiatry, 28 (1). 1-6. Jan 2015.
 
[18]  Lach, G., Schellekens, H., Dinan, T.G. and Cryan, J.F. “Anxiety, depression, and the microbiome: A role for gut peptides”, Neurotherapeutics, 15 (1). 36-59. Jan 2018.
 
[19]  Clark, A. and Mach, N. “Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes”, J Int Soc Sports Nutr, 13. 43. Nov 2016.
 
[20]  Zhu, X., Han, Y., Du, J., Liu, R., Jin, K. and Yi, W. “Microbiota-gut-brain axis and the central nervous system”, Oncotarget, 8 (32). 53829-53838. May 2017.
 
[21]  Chen, X., D’Souza, R. and Hong, S.T. (2013). “The role of gut microbiota in the gut-brain axis: Current challenges and perspectives”, Protein Cell, 4 (6). 403-414. Jun 2013.
 
[22]  Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E. and Wakefield, S. “Gut microbiota’s effect on mental health: The gut-brain axis”, Clin Pract, 7 (4). 987. Sep 2017.
 
[23]  Liu, L. and Zhu, G. “Gut-brain axis and mood disorder”, Front Psychiatry, 9. 223. May 2018.
 
[24]  Feng, Q., Chen, W.D. and Wang, Y.D. “Gut microbiota: An integral moderator in health and disease”, Front Microbiol, 9. 151. Feb 2018.
 
[25]  Quigley, E.M.M. “Microbiota-brain-gut axis and neurodegenerative diseases”, Curr Neurol Neurosci Rep, 17 (12). 94. Oct 2017.
 
[26]  Martin, C.R., Osadchiy, V., Kalani, A. and Mayer, E.A. “The brain-gut-microbiome axis”, Cell Mol Gastroenterol Hepatol, 6 (2). 133-148. Apr 2018.
 
[27]  Browning, K.N., Verheijden, S. and Boeckxstaens, G.E. “The vagus nerve in appetite regulation, mood, and intestinal inflammation”, Gastroenterology, 152 (4). 730-44. Mar 2017.
 
[28]  Proctor, C., Thiennimitr, P., Chattipakorn, N. and Chattipakorn, S.C. “Diet, gut microbiota and cognition”, Metab Brain Dis, 32 (1). 1-17. Feb 2017.
 
[29]  Felice, V.D. and O'Mahony, S.M. “The microbiome and disorders of the central nervous system”, Pharmacol Biochem Behav, 160. 1-13. Sep 2017.
 
[30]  Cenit, M.C., Sanz, Y. and Codoñer-Franch, P. “Influence of gut microbiota on neuropsychiatric disorders”, World J Gastroenterol, 23 (30). 5486-5498. Aug 2017.
 
[31]  Sanctuary, M.R., Kain, J.N., Angkustsiri, K. and German, J.B. “Dietary considerations in autism spectrum disorders: The potential role of protein digestion and microbial putrefaction in the gut-brain axis”, Front Nutr, 5. 40. May 2018.
 
[32]  Wu, Q. and Shah, N.P. “High γ-aminobutyric acid production from lactic acid bacteria: Emphasis on lactobacillus brevis as a functional dairy starter”, Crit Rev Food Sci Nutr, 57 (17). 3661-3672. Nov 2017.
 
[33]  Mazzoli, R. and Pessione, E. “The neuro-endocrinological role of microbial glutamate and GABA signaling”, Front Microbiol, 7. 1934. Nov 2016.
 
[34]  Israelyan, N. and Margolis, K.G. “Serotonin as a link between the gut-brain-microbiome axis in autism spectrum disorders”, Pharmacol Res, 132. 1-6. Jun 2018.
 
[35]  Evrensel, A. and Ceylan, M.E. “The gut-brain axis: The missing link in depression”, Clin Psychopharmacol Neurosci, 13 (3). 239-244. Dec 2015.
 
[36]  Kelly, J.R., Clarke, G., Cryan, J.F. and Dinan, T.G. “Brain-gut-microbiota axis: Challenges for translation in psychiatry”, Ann Epidemiol, 26. 366-372. 2016.
 
[37]  Ji, B. and Nielsen, J. “From next-generation sequencing to systematic modeling of the gut microbiome”, Front Genet, 6. 219. 2015.
 
[38]  Stilling, R.M., Dinan, T.G. and Cryan, J.F. “The brain's Geppetto-microbes as puppeteers of neural function and behaviour?”, J Neurovirol, 22. 14-21. 2016.
 
[39]  Kleiman, S.C., Watson, H.J., Bulik-Sullivan, E.C., Huh, E.Y., Tarantino, L.M., Bulik, C.M. and Carroll, I. M. “The intestinal microbiota in acute anorexia nervosa and during renourishment: Relationship to depression, anxiety, and eating disorder psychopathology”, Psychosom Med, 77. 969-981. 2015.
 
[40]  Dinan, T.G., Stilling, R.M., Stanton, C., Cryan, J.F. “Collective unconscious: How gut microbes shape human behavior”, J Psychiatr Res, 63. 1-9. 2015.
 
[41]  Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J. and Cryan, J. F. “Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve”, Proc Natl Acad Sci, 108 (38). 16050-16055. 2011.
 
[42]  Rhoads, J.M. “Probiotic Lactobacillus reuteri effective in treating infantile colic and is associated with inflammatory marker reduction”, J Pediatr, 196. 324-327. May 2018.
 
[43]  Hasannejad Bibalan, M., Eshaghi, M., Rohani, M., Esghaei, M., Darban-Sarokhalil, D., Pourshafie, M.R. and Talebi, M. “Isolates of lactobacillus plantarum and l. reuteri display greater antiproliferative and antipathogenic activity than other lactobacillus isolates”, J Med Microbiol, 66 (10). 1416-1420. Oct 2017.
 
[44]  Sarkar, A., Harty, S., Lehto, S.M., Moeller, A.H., Dinan, T.G., Dunbar, R.I.M., Cryan, J. F. and Burnet, P. W. “The microbiome in psychology and cognitive neuroscience”, Trends Cogn Sci, 22 (7). 611-636. Jul 2018.
 
[45]  Ghoshal, U.C. “Gut microbiota-brain axis modulation by a healthier microbiological microenvironment: Facts and fictions”, J Neurogastroenterol Motil, 24 (1). 4-6. Jan 2018.
 
[46]  Tengeler, A.C., Kozicz, T. and Kiliaan, A.J. “Relationship between diet, the gut microbiota, and brain function”, Nutr Rev, 76 (8). 603-617. Aug 2018.
 
[47]  Conlon, M.A. and Bird, A.R. (2015). “The impact of diet and lifestyle on gut microbiota and human health”, Nutrients, 7 (1). 17-44. Jan 2015.
 
[48]  Liang, S., Wu, X., Hu, X., Wang, T. and Jin, F. “Recognizing depression from the microbiota-gut-brain axis”, Int J Mol Sci, 19 (6). pii. E1592. May 2018.
 
[49]  Hodes, G.E., Kana, V., Menard, C., Merad, M. and Russo, S.J. “Neuroimmune mechanisms of depression”, Nat Neurosci, 18 (10). 1386-1393. Oct 2015.
 
[50]  Cryan, J.F. and Dinan, T.G. “Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour”, Nat Rev Neurosci, 13 (10). 701-712. Oct 2012.
 
[51]  Breit, S., Kupferberg, A., Rogler, G. and Hasler, G. “Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders”, Front Psychiatry, 9. 44. Mar 2018.
 
[52]  Miki, T., Eguchi, M., Kurotani, K., Kochi, T., Kuwahara, K., Ito, R., Kimura, Y., Tsuruoka, H., Akter, S., Kashino, I., Kabe, I., Kawakami, N., Mizoue, T. “Dietary fiber intake and depressive symptoms in Japanese employees: The furukawa nutrition and health study”, Nutrition, 32 (5). 584-589. May 2016.
 
[53]  Ercolini, D. and Fogliano, V. “Food design to feed the human gut microbiota”, J Agric Food Chem, 66 (15). 3754-3758. Apr 2018.
 
[54]  Burokas, A., Moloney, R.D., Dinan, T.G. and Cryan, J.F. “Microbiota regulation of the mammalian gut-brain axis”, Adv Appl Microbiol, 91. 1-62. 2015.
 
[55]  Skórzewska, A., Lehner, M., Wisłowska-Stanek, A., Krząścik, P., Ziemba, A. and Płaźnik, A. “The effect of chronic administration of corticosterone on anxiety- and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in brain structures of low- and high-anxiety rats”, Horm Behav, 65 (1). 6-13. Jan 2014.
 
[56]  Coley, N., Vaurs, C. and Andrieu, S. “Nutrition and cognition in aging adults”, Clin Geriatr Med, 31 (3). 453-464. Aug 2015.
 
[57]  Lim, S.Y., Kim, E.J., Kim, A., Lee, H.J., Choi, H.J. and Yang, S.J. “Nutritional factors affecting mental health”, Clin Nutr Res, 5 (3). 143-152. Jul 2016.
 
[58]  van de Rest, O., Berendsen, A.A., Haveman-Nies, A. and de Groot, L.C. “Dietary patterns, cognitive decline, and dementia: A systematic review”, Adv Nutr, 6 (2). 154-168. Mar 2015.
 
[59]  Holder, M.K. and Chassaing, B. “Impact of food additives on the gut-brain axis”, Physiol Behav, 192. 173-176. Aug 2018.
 
[60]  Moore, K., O'Shea, M., Hughes, C.F., Hoey, L., Ward, M. and McNulty, H. “Current evidence linking nutrition with brain health in ageing”, Nutr Bull, 42. 61-68. 2017.
 
[61]  Qiao, Z., Chen, Y., Zhang, Y. and Niu, Q. “Beneficial effects of deep sea fish oil on diabetic mice neurological injury”, Cell Mol Biol (Noisy-le-grand), 63 (1), 45-48. Jan 2017.
 
[62]  Anastasiou, C.A., Yannakoulia, M., Kosmidis, M.H., Dardiotis, E., Hadjigeorgiou, G.M., Sakka, P., Arampatz, X., Bougea, A.M., Labropoulos, I. and Scarmeas, N. “Mediterranean diet and cognitive health: Initial results from the hellenic longitudinal investigation of ageing and diet”, PLoS One, 12 (8). e0182048. Aug 2017.
 
[63]  Parry, D.A., Oeppen, R.S., Amin, M. and Brennan, P.A. “Can dietary supplements improve a clinician's well-being and health?”, Br J Oral Maxillofac Surg, 56 (2). 85-89. Feb 2018.
 
[64]  Rathod, R., Kale, A. and Joshi, S. (2016). “Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function”, J Biomed Sci, 23. 17. Jan 2016.
 
[65]  Tucker, K.L. “Nutrient intake, nutritional status, and cognitive function with aging”, Ann N Y Acad Sci, 1367 (1). 38-49. Mar 2016.
 
[66]  Winter, G., Hart, R.A., Charlesworth, R.P.G. and Sharpley, C.F. “Gut microbiome and depression: What we know and what we need to know”, Rev Neurosci, 29 (6). 629-643. Aug 2018.
 
[67]  Tetel, M.J., de Vries, G.J., Melcangi, R.C., Panzica, G. and O'Mahony, S.M. “Steroids, stress and the gut microbiome-brain axis”, J Neuroendocrinol, 30 (2). Feb 2018.
 
[68]  Carabotti, M., Scirocco, A., Maselli, M.A. and Severia, C. “The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems”, Ann Gastroenterol, 28 (2). 203-209. Apr-Jun 2015.
 
[69]  Anisman, H., Hayley, S. and Kusnecov, A. The immune system and mental health. 1st ed, Academic Press, London, 2018.
 
[70]  Cook, M.D., Martin, S.A., Williams, C., Whitlock, K., Wallig, M.A., Pence, B.D. and Woods, J.A. “Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis”, Brain Behav Immun, 33. 46-56. Oct 2013.
 
[71]  Matt, S.M., Allen, J.M., Lawson, M.A., Mailing, L.J., Woods, J.A. and Johnson, R.W. “Butyrate and dietary soluble fiber improve neuroinflammation associated with aging in mice”, Front Immunol, 9. 1832. Aug 2018.
 
[72]  Sonnenburg, E.D., Smits, S.A., Tikhonov, M., Higginbottom, S.K., Wingreen, N.S. and Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations”, Nature, 529 (7585). 212-215. Jan 2016.
 
[73]  Hold, G.L. “The gut microbiota, dietary extremes and exercise. Gut, 63 (2). 1838-1839. 2014.
 
[74]  Khan, N.A., Raine, L.B., Drollette, E.S., Scudder, M.R., Kramer, A.F. and Hillman, C.H. “Dietary fiber is positively associated with cognitive control among prepubertal children”, J Nutr, 145 (1). 143-149. Jan 2015.
 
[75]  Wright, R.S., Gerassimakis, C., Bygrave, D. and Waldstein, S.R. “Dietary factors and cognitive function in poor urban settings”, Curr Nutr Rep, 6 (1). 32-40. Mar 2017.
 
[76]  Aloi, M., Tromba, L., Di Nardo, G., Dilillo, A., Del Giudice, E., Marocchi, E., Viola, F., Civitelli, F., Berni, A. and Cucchiara, S. “Premature subclinical atherosclerosis in pediatric inflammatory bowel disease”, J Pediatr, 161 (4). 589-594. Oct 2012.
 
[77]  Xu, H., Li, S., Song, X., Li, Z. and Zhang, D. “Exploration of the association between dietary fiber intake and depressive symptoms in adults”, Nutrition, 54. 48-53. Oct 2018.
 
[78]  Capuano, E. “The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect”, Crit Rev Food Sci Nutr, 57 (16). 3543-3564. Nov 2017.
 
[79]  Guligowska, A., Pigłowska, M., Fife, E., Kostka, J., Sołtysik, B.K., Kroc, Ł.and Kostka, T. “Inappropriate nutrients intake is associated with lower functional status and inferior quality of life in older adults with depression”, Clin Interv Aging, 11. 1505-1517. Oct 2016.
 
[80]  Rubio-López, N., Morales-Suárez-Varela, M., Pico, Y., Livianos-Aldana, L. and Llopis-González, A. “Nutrient intake and depression symptoms in spanish children: The ANIVA study”, Int J Environ Res Public Health, 13 (3). Pii, E352. Mar 2016.
 
[81]  Lai, J.S., Hiles, S., Bisquera, A., Hure, A.J., McEvoy, M. and Attia, J. “A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults”, Am J Clin Nutr, 99. 181-197. 2014.
 
[82]  Albenberg, L.G. and Wu G.D. “Diet and the intestinal microbiome: Associations, functions, and implications for health and disease”, Gastroenterology, 146 (6). 1564-1572. May 2014.
 
[83]  Berk, M., Williams, L.J., Jacka, F.N., O'Neil, A., Pasco, J.A., Moylan, S., Allen, N.B., Stuart, A.L., Hayley, A.C., Byrne, M.L. and Maes, M. “So depression is an inflammatory disease, but where does the inflammation come from?”, BMC Med, 11. 200. Sep 2013.
 
[84]  Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D., Hirschfield, G.M., Hold, G., Quraishi, M.N., Kinross, J., Smidt, H., Tuohy, K.M., Thomas, L.V., Zoetendal, E.G. and Hart, A. “The gut microbiota and host health: A new clinical frontier”, Gut, 65 (2). 330-339. Feb 2016.
 
[85]  Davis, J.L. Top 10 Sources of Fiber. WebMD. https://www.webmd.com/diet/features/top-10-sources-of-fiber; 2018 [accessed 18 October 2018].
 
[86]  Devore, E.E., Grodstein, F., van Rooij, F.J., Hofman, A., Stampfer, M.J., Witteman, J.C.M. and Breteler, M.M.B. “Dietary antioxidants and long-term risk of dementia”, Arch Neurol, 67 (7). 819-825. Jul 2010.
 
[87]  Almeida, O.P., Ford, A.H., Hirani, V., Singh, V., van Bockxmeer, F.M., McCaul, K. “B vitamins to enhance treatment response to antidepressants in middle-aged and older adults: results from the B-VITAGE randomised, double-blind, placebo-controlled trial”, Br J Psychiatry, 205 (6). 450-457. Dec 2014.
 
[88]  Smith, A.D. and Refsum, H. “Homocysteine, B vitamins, and cognitive impairment”, Annu Rev Nutr, 36. 211-239. Jul 2016.
 
[89]  Clarke, R., Bennett, D., Parish, S., Lewington, S., Skeaff, M., Eussen, S.J.P.M., Lewerin,C., Stott, D.J., Armitage, J., Hankey, G.J., Lonn, E., Spence, J.D., Galan, P., de Groot, L.C., Halsey, J., Dangour, A.D., Collins, R. and Grodstein, F. “Effects of homocysteine lowering with B vitamins on cognitive aging: Meta-analysis of 11 trials with cognitive data on 22,000 individuals”, Am J Clin Nutr, 100 (2). 657-666. Aug 2014.
 
[90]  Almeida, O.P., Ford, A.H. and Flicker, L. “Systematic review and meta-analysis of randomized placebo-controlled trials of folate and vitamin B12 for depression”, Int Psychogeriatr, 27 (5). 727-737. May 2015.
 
[91]  Pawlak, R., Parrott, S.J., Raj, S., Cullum-Dugan, D. and Lucus, D. “How prevalent is vitamin B (12) deficiency among vegetarians?”, Nutr Rev, 71 (2). 110-117. Feb 2013.
 
[92]  Jain, R., Singh, A., Mittal, M. and Talukdar, B. “Vitamin B12 deficiency in children: a treatable cause of neurodevelopmental delay”, J Child Neurol, 30 (5). 641-643. Apr 2015.
 
[93]  Venkatramanan, S., Armata, I.E., Strupp, B.J. and Finkelstein, J.L. “Vitamin B-12 and cognition in children”, Adv Nutr, 7 (5). 879-888. Sep 2016.
 
[94]  Gille, D. and Schmid, A. “Vitamin B12 in meat and dairy products”, Nutr Rev. 73 (2). 106-115. Feb 2015.
 
[95]  Watanabe, F. and Bito, T. “Vitamin B12 sources and microbial interaction”, Exp Biol Med (Maywood), 243 (2). 148-158. Jan 2018.
 
[96]  Reynolds, E. “Vitamin B12, folic acid, and the nervous system”, Lancet Neurol, 5. 949-960. 2006.
 
[97]  Shen, L. and Ji, H.F. “Associations between homocysteine, folic Acid, vitamin B12 and alzheimer's disease: Insights from meta-analyses”, J Alzheimers Dis, 46 (3). 777-790. 2015.
 
[98]  Maddock, J., Zhou, A., Cavadino, A., Kuźma, E., Bao, Y., Smart, M., Saum, K., Schöttker, B., Engmann, J., Kjærgaard, M., Karhunen, V., Zhan Y., Lehtimäki, T., Rovio, S.P., Byberg, L., Lahti, J., Marques-Vidal, P., Sen, A., Perna, L., Schirmer, H., Singh-Manoux, A., Auvinen, J., Hutri-Kähönen, N., Kähönen M., Kilander, L., Räikkönen, K., Melhus, H., Ingelsson, E., Guessous, I., Petrovic, K.E., Schmidt, H., Schmidt, R., Vollenweider, P., Lind, L., Eriksson, J.G., Michaëlsson, K., Raitakari, O.T., Hägg, S., Pedersen, N.L., Herzig, K.H., Järvelin, M.R., Veijola, J., Kivimaki, M., Jorde, R., Brenner, H., Kumari, M., Power, C., Llewellyn, D.J. and Hyppönen, E. “Vitamin D and cognitive function: A mendelian randomisation study”, Scientific Reports, 7. 13230. Oct 2017.
 
[99]  Mokry, L.E., Ross, S., Morris, J.A., Manousaki, D., Forgetta, V. and Richards, J.B. “Genetically decreased vitamin D and risk of Alzheimer disease”, Neurology, 87 (24). 2567-2574. Dec 2016.
 
[100]  Pettersen, J.A. “Does high dose vitamin D supplementation enhance cognition?: A randomized trial in healthy adults”, Exp Gerontol, 90. 90-97. Apr 2017.
 
[101]  Annweiler, C., Dursun, E., Féron, F., Gezen-Ak, D., Kalueff, A.V., Littlejohns, T., Llewellyn, D.J., Millet, P., Scott, T., Tucker, K.L., Yilmazer, S., Beauchet, O. “Vitamin D and cognition in older adults’: Updated international recommendations”, J Intern Med, 277 (1). 45-57. Jan 2015.
 
[102]  Föcker, M., Antel, J., Grasemann, C., Führer, D., Timmesfeld, N., Öztürk, D., Peters, T., Hinney, A., Hebebrand, J. and Libuda, L. “Effect of an vitamin D deficiency on depressive symptoms in child and adolescent psychiatric patients - a randomized controlled trial: Study protocol”, BMC Psychiatry, 18 (1). 57. Mar 2018.
 
[103]  Sommer, I., Griebler, U., Kien, C., Auer, S., Klerings, I., Hammer, R., Holzer, P. and Gartlehner, G. “Vitamin D deficiency as a risk factor for dementia: A systematic review and meta-analysis”, BMC Geriatr, 17. 16. 2017.
 
[104]  Brouwer-Brolsma, E., Dhonukshe-Rutten, R., van Wijngaarden, J., van der Zwaluw, N.L., Sohl, E., In’t Veld, P.H., van Dijk, S.C., Swart, K.M.A., Enneman, A.W., Ham, A.C., van Schoor, N.M., van der Velde, N., Uitterlinden, A.G., Lips, P., Feskens, E.J.M. and de Groot, L.C.P.G.M. “Low vitamin D status is associated with more depressive symptoms in Dutch older adults”, Eur J Nutr, 55 (4). 1525-1534. 2015.
 
[105]  Tomás-Barberán, F.A., Selma, M.V. and Espín, J.C. “Interactions of gut microbiota with dietary polyphenols and consequences to human health”, Curr Opin Clin Nutr Metab Care, 19 (6). 471-476. Nov 2016.
 
[106]  Herman, F., Westfall, S., Brathwaite, J. and Pasinetti, G.M. “Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols”, Front Pharmacol, 9. 867. Aug 2018.
 
[107]  Farzaei, M.H., Rahimi, R. and Abdollahi, M. “The role of dietary polyphenols in the management of inflammatory bowel disease”, Curr Pharm Biotechnol, 16 (3). 196-210. 2015.
 
[108]  Teixeira, J., Chavarria, D., Borges, F., Wojtczak, L., Wieckowski, M.R., Karkucińska-Wieckowska, A., Oliveira, P.J. “Dietary polyphenols and mitochondrial function: Role in Health and Disease”, Curr Med Chem, 24. May 2017.
 
[109]  Schaffer, S., Asseburg, H., Kuntz, S., Muller, W.E. and Eckert, G.P. “Effects of polyphenols on brain ageing and alzheimer's disease: Focus on mitochondria”, Mol Neurobiol, 46 (1). 161-178. Aug 2012.
 
[110]  Somerville, V., Bringans, C. and Braakhuis, A. “Polyphenols and performance: A systematic review and meta-analysis”, Sports Med, 47 (8). 1589-1599. Aug 2017.
 
[111]  Reglodi, D., Renaud, J., Tamas, A., Tizabi, Y., Socías, S.B., Del-Bel, E. and Raisman-Vozarid, R. “Novel tactics for neuroprotection in parkinson's disease: Role of antibiotics, polyphenols and neuropeptides”, Prog Neurobiol, 155. 120-148. Aug 2017.
 
[112]  Zhang, Y., Hodgson, N.W., Trivedi, M.S., Abdolmaleky, H.M., Fournier, M., Cuenod, M., Do, K.Q. and Deth, R.C. “Decreased brain levels of vitamin B12 in aging, autism and schizophrenia”, PLoS One, 11 (1). e0146797. Jan 2016
 
[113]  McSweeney, M. and Seetharaman, K. “State of polyphenols in the drying process of fruits and vegetables”, Crit Rev Food Sci Nutr, 55 (5). 660-669. 2015.
 
[114]  Gobert, M., Rémond, D., Loonis, M., Buffière, C., Santé-Lhoutellier, V. and Dufour, C. “Fruits, vegetables and their polyphenols protect dietary lipids from oxidation during gastric digestion”, Food Funct, 5 (9). 2166-2174. Sep 2014.
 
[115]  Pérez-Jiménez, J., Neveu, V., Vos, F. and Scalbert, A. “Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database”, European journal of clinical nutrition, 64 Suppl 3. S112-20. 2010.
 
[116]  Jung, A., Spira, D., Steinhagen-Thiessen, E., Demuth, I. and Norman, K. “Zinc deficiency is associated with depressive symptoms-results from the Berlin aging study II”, J Gerontol A Biol Sci Med Sci, 72 (8). 1149-1154. Aug 2017.
 
[117]  Vela, G., Stark, P., Socha, M., Sauer, A.K., Hagmeyer, S. and Grabrucker, A.M. “Zinc in gut-brain interaction in autism and neurological disorders”, Neural Plast, 2015. 972791. 2015.
 
[118]  Takeda, A., Nakamura, M., Fujii, H. and Tamano, H. “Synaptic Zn²⁺ homeostasis and its significance”, Metallomics, 5 (5). 417-423. May 2013.
 
[119]  de Moura, J.E., de Moura, E.N., Alves, C.X., Vale, S.H., Dantas, M.M., Silva, A.D., Almeida, M.G., Leite, L.D. and Brandão-Neto, J. “Oral zinc supplementation may improve cognitive function in schoolchildren”, Biol Trace Elem Res, 155 (1). 23-28. Oct 2013.
 
[120]  Takeda, A. and Tamano, H. “Significance of the degree of synaptic Zn²⁺ signaling in cognition”, Biometals, 29 (2). 177-185. Apr 2016.
 
[121]  Tao, L., Zheng, Y., Shen, Z., Li Y., Tian, X., Dou, X., Qian, J. and Shen, H. “Psychological stress-induced lower serum zinc and zinc redistribution in rats”, Biol Trace Elem Res, 155 (1). 65-71. Oct 2013.
 
[122]  Yuan, Y., Niu, F., Liu, Y. and Lu, N. “Zinc and its effects on oxidative stress in Alzheimer's disease”, Neurol Sci, 35 (6). 923-928. Jun 2014.
 
[123]  Marcellini, F., Giuli, C., Papa, R., Gagliardi, C., Dedoussis, G., Herbein, G., Fulop, T., Monti, D., Rink, L., Jajte, J. and Mocchegiani, E. “Zinc status, psychological and nutritional assessment in old people recruited in five European countries: Zincage study”, Biogerontology, 7 (5-6). 339-345. Oct-Dec 2006.
 
[124]  U.S. Department of Agriculture, Agricultural Research Service. USDA Food Composition Databases, https://ndb.nal.usda.gov; 2018a [accessed 19 October 2018].
 
[125]  Georgieff, M.K. “Long-term brain and behavioral consequences of early iron deficiency”, Nutrition Reviews, 69 (Suppl 1). S43-S48. 2011.
 
[126]  Moos, T., Skjørringe, T. and Thomsen, L.L. “Iron deficiency and iron treatment in the fetal developing brain - a pilot study introducing an experimental rat model”, Reprod Health, 15 (Suppl 1). 93. Jun 2018.
 
[127]  Cook, R.L., O'Dwyer, N.J., Parker, H.M., Donges, C.E., Cheng, H.L., Steinbeck, K.S., Cox, E.P., Franklin, J.L., Garg, M.L., Rooney, K.B. and O’Connor, H.T. “Iron deficiency anemia, not iron deficiency, is associated with reduced attention in healthy young women”, Nutrients, 9 (11). pii. E1216. Nov 2017.
 
[128]  Zainel, A.J.A.L., Osman, S.R.O., Al-Kohji, S.M.S. and Selim, N.A. “Iron deficiency, its epidemiological features and feeding practices among infants aged 12 months in Qatar: A cross-sectional study”, BMJ Open, 8 (5). e020271. May 2018.
 
[129]  Leyshon, B.J., Radlowski, E.C., Mudd, A.T., Steelman, A.J. and Johnson, R.W. “Postnatal iron deficiency alters brain development in piglets”, J Nutr, 146 (7). 1420-1427. Jul 2016.
 
[130]  Mudd, A.T., Fil, J.E., Knight, L.C., Lam, F., Liang, Z.P. and Dilger, R.N. “Early-life iron deficiency reduces brain iron content and alters brain tissue composition despite iron repletion: A neuroimaging assessment”, Nutrients, 10 (2). pii. E135. Jan 2018.
 
[131]  McCann, J.C. and Ames, B.N. “An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function”, Am J Clin Nutr, 85 (4). 931-945. 2007.
 
[132]  Goldsmith, J.R. and Sartor, B. (2014). “The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications”, J Gastroenterol, 49 (5). 785-798. May 2014.
 
[133]  Noorazar, S.G., Ranjbar, F., Nemati, N., Yasamineh, N. and Kalejahi, P. “Relationship between severity of depression symptoms and iron deficiency anemia in women with major depressive disorder”, J Anal Res Clin Med, 3 (4). 219-224. 2015.
 
[134]  U.S. Department of Agriculture, Agricultural Research Service. USDA Food Composition Databases, https://ndb.nal.usda.gov; 2018b [accessed 19 October 2018].
 
[135]  Bentsen, H. “Dietary polyunsaturated fatty acids, brain function and mental health”, Microb Ecol Health Dis, 28 (sup1). 1281916. 2017.
 
[136]  Chalon, S. “Omega-3 fatty acids and monoamine neurotransmission”, Prostaglandins Leukot Essent Fatty Acids, 75 (4-5). 259-269. Oct-Nov 2006.
 
[137]  Muller, C.P., Reichel, M., Muhle, C., Rhein, C., Gulbins, E. and Kornhuber, J. “Brain membrane lipids in major depression and anxiety disorders”, Biochim Biophys Acta, 1851 (8). 1052-1065. Aug 2015.
 
[138]  Pekmez, C.T., Dragsted, L.O. and Brahe, L.K. “Gut microbiota alterations and dietary modulation in childhood malnutrition - The role of short chain fatty acids”, Clin Nutr, pii. S0261-5614 (18) 30077-3. Feb 2018.
 
[139]  Hryhorczuk, C., Florea, M., Rodaros, D., Poirier, I., Daneault, C., Des Rosiers, C., Arvanitogiannis, A., Alquier, T. and Fulton, S. “Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids”, Neuropsychopharmacology, 41 (3). 811-821. Feb 2016.
 
[140]  Swanson, D., Block, R. and Mousa, S.A. “Omega-3 fatty acids EPA and DHA: Health benefits throughout life”, Adv Nutr, 3 (1). 1-7. Jan 2012.
 
[141]  Mudd, A.T., Fil, J.E., Knight, L.C. and Dilger, R.N. “Dietary iron repletion following early-life dietary iron deficiency does not correct regional volumetric or diffusion tensor changes in the developing pig brain”, Front Neurol, 8. 735. Jan 2018.
 
[142]  Ciappolino, V., Mazzocchi, A., Enrico, P., Syrén, M.L., Delvecchio, G., Agostoni, C. and Brambilla, P. “N-3 polyunsatured fatty acids in menopausal transition: A systematic review of depressive and cognitive disorders with accompanying vasomotor symptoms”, Int J Mol Sci, 19 (7). pii. E1849. Jun 2018.
 
[143]  Gow, R.V. and Hibbeln, J.R. “Omega-3 fatty acid and nutrient deficits in adverse neurodevelopment and childhood behaviors”, Child Adolesc Psychiatr Clin N Am, 23 (3). 555-590. Jul 2014.
 
[144]  Hussain, G., Schmitt, F., Loeffler, J.P. and Gonzalez de Aguilar, J.L. “Fatting the brain: A brief of recent research”, Front Cell Neurosci, 7. 144. 2013.
 
[145]  Jicha, G.A. and Markesbery, W.R. “Omega-3 fatty acids: Potential role in the management of early alzheimer's disease”, Clin Interv Aging, 5. 45–61. 2010.
 
[146]  Nayak, S., Khozin-Goldberg, I., Cohen, G. and Zilberg, D. “Dietary supplementation with ω6 LC-PUFA-rich algae modulates zebrafish immune function and improves resistance to streptococcal infection”, Front Immunol, 9. 1960. Sep 2018.
 
[147]  Best, K.P., Sullivan, T.R., Palmer, D.J., Gold, M., Martin, J., Kennedy, D. and Makrides, M. “Prenatal omega-3 LCPUFA and symptoms of allergic disease and sensitization throughout early childhood - a longitudinal analysis of long-term follow-up of a randomized controlled trial”, World Allergy Organ J, 11 (1). 10. Jun 2018.
 
[148]  Freeman, M.P., Hibbeln, J.R., Wisner, K.L., Davis, J.M., Mischoulon, D., Peet, M., Keck, P.E., Marangell, L.B., Richardson, A.J., Lake, J. and Stoll, A.L. “Omega-3 fatty acids: Evidence basis for treatment and future research in psychiatry”, J Clin Psychiatry, 67. 1954-1967. 2006.
 
[149]  Echeverría, F., Valenzuela, R., Catalina Hernandez-Rodas, M. and Valenzuela, A. “Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources”, Prostaglandins Leukot Essent Fatty Acids, 124. 1-10. Sep 2017.
 
[150]  Sidhu, V.K., Huang, B.X., Desai, A., Kevala, K. and Kim, H.Y. “Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome”, Neurobiol Aging, 41. 73-85. May 2016.
 
[151]  Cardoso, C., Afonso, C. and Bandarra, N.M. “Dietary DHA and health: Cognitive function ageing”, Nutr Res Rev, 29 (2). 281-294. Dec 2016.
 
[152]  Eudave, D.M., BeLow, M.N. and Flandreau, E.I. “Effects of high fat or high sucrose diet on behavioral-response to social defeat stress in mice”, Neurobiol Stress, 9. 1-8. Jun 2018.
 
[153]  Gancheva, S., Galunska, B. and Zhelyazkova‐Savova, M. “Diets rich in saturated fat and fructose induce anxiety and depression-like behaviours in the rat: Is there a role for lipid peroxidation?”, Int J Exp Pathol, 98 (5). 296–306. Oct 2017.
 
[154]  Bruce-Keller, A.J., Salbaum, J.M., Luo, M., Blanchard, E., Taylor, C.M., Welsh, D.A. and Berthoud, H. “Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity”, Biol Psychiatry, 77 (7). 607-615. Apr 2015.
 
[155]  Sartorius, T., Ketterer, C., Kullmann, S., Balzer, M., Rotermund, C., Binder, S., Hallschmid, M.., Machann, J., Schick, F., Somoza, V., Preissl, H., Fritsche, A., Häring, H. and Hennige, A.M. “Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior”, Diabetes, 61 (7). 1669-1679. Jul 2012.
 
[156]  Kerdiles, O., Laye, S. and Calon, F. “Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases”, Trends Food Sci Technol, 69 Part B. 203-213. Nov 2017.
 
[157]  Sanguansri, L., Augustin, M.A., Lockett, T.J., Abeywardena, M.Y., Royle, P.J., Mano, M.T., Patten, G.S. “Bioequivalence of n-3 fatty acids from microencapsulated fish oil formulations in human subjects”, Br J Nutr, 113 (5). 822-831. Mar 2015.
 
[158]  Vannice, G. and Rasmussen, H. “Position of the academy of nutrition and dietetics: Dietary fatty acids for healthy adults”, J Acad Nutr Diet, 114 (1).136-153. Jan 2014.
 
[159]  Fernandes, M.F., Mutch, D.M. and Leri, F. “The Relationship between fatty acids and different depression-delated brain regions, and their potential role as biomarkers of response to antidepressants”, Nutrients, 9 (3). pii. E298. Mar 2017.
 
[160]  World Health Organization (WHO). Population nutrient intake goals for preventing diet-related chronic diseases, http://www.who.int/nutrition/topics/5_population_nutrient/en/index.html; 2018 [accessed 22 August 2018].
 
[161]  Simopoulos, A.P. “Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain”, Mol Neurobiol, 44 (2). 203-215. Oct 2011.
 
[162]  Liu, Y., Liu, W., Wu, C., Juan, Y., Wu, Y., Tsai, H., Wang, S. and Tsai, Y. “Psychotropic effects of lactobacillus plantarum PS128 in early life-stressed and naive adult mice”, Brain Res, 1631. 1-12. Jan 2016.
 
[163]  Carabotti, M., Scirocco, A., Maselli, M.A. and Severia, C. “The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems”, Ann Gastroenterol, 28 (2). 203-209. Apr-Jun 2015.
 
[164]  Dolan, K.E., Finley, H.J., Burns, C.M., Gasta, M.G., Gossard, C.M., Parker, E.C., Pizano, J.M., Williamson, C.B. and Lipski, E.A. “Probiotics and disease: A comprehensive summary-Part 1, Mental and Neurological Health”, Integr Med (Encinitas), 15 (5). 46-58. Oct 2016.
 
[165]  Holzer, P. and Farzi, A. “Neuropeptides and the microbiota-gut-brain axis”, Adv Exp Med Biol, 817. 195-219. 2014.
 
[166]  Barrett, E., Ross, R.P., O'Toole, P.W., Fitzgerald, G.F. and Stanton, C. “γ-aminobutyric acid production by culturable bacteria from the human intestine”, J Appl Microbiol, 113 (2). 411-417. Aug 2012.
 
[167]  Mach, N. and Fuster-Botellaa, D. “Endurance exercise and gut microbiota: A review”, J Sport Health Sci, 6 (2). 179-197. June 2017.
 
[168]  Jacouton, E., Mach, N., Cadiou, J., Lapaque, N., Clément, K., Doré, J., van Hylckama Vlieg, J.E.T., Smokvina, T., Blottière, H.M. “Lactobacillus rhamnosus CNCMI-4317 modulates Fiaf/Angptl4 in intestinal epithelial cells and circulating level in mice”, PLoS One, 10 (10). e0138880. 2015.
 
[169]  Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., Thangaraju, M., Prasad, P.D., Manicassamy, S., Munn, D.H., Lee, J.R., Offermanns, S. and Ganapathy, V. “Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis”, Immunity, 40 (1). 128-139. Jan 2014.
 
[170]  Machiels, K., Joossens, M., Sabino, J., de Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P. and Vermeire, S. “A decrease of the butyrate-producing species roseburia hominis and faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis”, Gut, 63 (8). 1275-1283. Aug 2014.