[1] | Ministerium für Kultus, Jugend und Sport Baden-Württemberg, Bildungsplan des Gymnasiums. Chemie – Überarbeitete Fassung vom 25. März 2022, Neckar-Verlag, Stuttgart, 2022. |
|
[2] | Meier, M., Schubatzky, T., Obczovsky, M., Thoms, L.-J., and Thyssen, C., Fachdidaktische Perspektiven und Szenarien des 3D-Drucks im naturwissenschaftlichen Unterricht, MNU Journal, 75 (1), 2022, 79–84. |
|
[3] | Scheid, M., Hock, K. and Schwarzer, S., 3D Printing in Chemistry Teaching: From a Submicroscopic Molecule to Macroscopic Functions - Development of a Molecular Model Set and Experimental Analysis of the Filaments. World Journal Chemistry Education, 7 (2), 2019, 72–83. |
|
[4] | Schwarzer, S., Parchmann, I., Hübner, D., Wahler, J., Liesener, F., Pachaly, B. and Zdzieblo, J., Basisartikel: Strukturen nach Maß - Von der chemischen Forschungsidee zu Erkenntnissen und Produkten. NiU Chemie, 29 (164), 2018, 2–9. |
|
[5] | Paukstelis, P.J., MolPrint3D: Enhanced 3D Printing of Ball-and-Stick Molecular Models. J. Chem. Educ., 95 (1), 2018, 169–172. |
|
[6] | Jones, O.A.H. and Spencer, M.J.S. A Simplified Method for the 3D Printing of Molecular Models for Chemical Education. J. Chem. Educ., 95 (1), 2018, 88–96. |
|
[7] | Renner, M., und Griesbeck, A. (2020) Think and Print: 3D Printing of Chemical Experiments. J. Chem. Educ., 97 (10), 3683–3689. |
|
[8] | Linkwitz, M., Zidny, R., Nida, S., Seeger, L., Belova, N. and Eilks, I., Simple green organic chemistry experiments with the kitchen microwave for high school chemistry classrooms. Chem. Teach. Int., 4 (2), 2022, 165–172. |
|
[9] | Zowada, C., Linkwitz, M., Siol, A. and Eilks, I., Evaluating Sustainability in chemistry teaching. CHEMKON, 27 (8), 2020, 365–372. |
|
[10] | Vacano, B., Mangold, H., and Seitz, C., Kunststoffe im Kreislauf: Die Zeit ist reif. Chem. Unserer Zeit, 55 (6), 2021, 374–385. |
|
[11] | Sin, L.T. and Bee Soo Tueen, Polylactic acid: a practical guide for the processing, manufacturing, and applications of PLA, Elsevier, Oxford, United Kingdom; Cambridge, MA, United States, 2019. |
|
[12] | Masutani, K. and Kimura, Y., PLA Synesis. From the Monomer to the Polymer, in Jiménez, A., Peltzer, M. and Ruseckaite, R. (Eds.) Polymer Chemistry Series, Royal Society of Chemistry, Cambridge, 2014, 1–36. |
|
[13] | Taib, N.-A.A.B., Rahman, M.R., Huda, D., Kuok, K.K., Hamdan, S., Bakri, M.K.B., Julaihi, M.R.M.B. and Khan, A., A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull., 80 (2), 2023, 1179–1213. |
|
[14] | Haider, T.P., Völker, C., Kramm, J., Landfester, K. and Wurm, F.R., Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem. Int. Ed., 58 (1), 2019, 50–62. |
|
[15] | Wagner, G., Werkstoffe aus Milch und Zucker. Biologisch abbaubare Werkstoffe im Chemieunterricht. NiU Chemie, 10 (50), 1999, 24–28. |
|
[16] | Remus, L., PLA aus Milchsäure. Ein Kurzversuch für die Sek. I. PdN Chemie, 54 (4), 2005, 44–47. |
|
[17] | Robert, J.L. and Aubrecht, K.B., Ring-Opening Polymerization of Lactide To Form a Biodegradable Polymer. J. Chem. Educ., 85 (2), 2008, 258–260. |
|
[18] | Linkwitz, M., and Eilks, I. (2020). Greening the Senior High School Chemistry Curriculum: An Action Research Initiative. In ACS Symposium Series, American Chemical Society, Washington, DC, 55–68. |
|
[19] | Jamshidian, M., Tehrany, E.A., Imran, M., Jacquot, M. and Desobry, S., Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf., 9 (5), 2010, 552–571. |
|