World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: http://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2018, 6(1), 54-62
DOI: 10.12691/wjce-6-1-9
Open AccessSpecial Issue

Teaching Organic Electronics: The Synthesis of the Conjugated Polymer MEH-PPV in a Hands-on Experiment for Undergraduate Students

Amitabh Banerji1, , Ann-Kathrin Schönbein2 and Lena Halbrügge1

1Institute of Chemistry Education, University of Cologne, Cologne, Germany

2Department of Molecular Electronics, Max Planck Institute for Polymer Research, Mainz, Germany

Pub. Date: January 27, 2018

Cite this paper:
Amitabh Banerji, Ann-Kathrin Schönbein and Lena Halbrügge. Teaching Organic Electronics: The Synthesis of the Conjugated Polymer MEH-PPV in a Hands-on Experiment for Undergraduate Students. World Journal of Chemical Education. 2018; 6(1):54-62. doi: 10.12691/wjce-6-1-9

Abstract

Organic light emitting diodes (OLEDs) are modern illuminants of the next generation. OLEDs use (among others) semiconducting polymers for light emission and open the pathway to innovative applications as flexible or transparent displays or luminaire. For the school-implementation of OLEDs low-cost experiments and teaching materials have been developed earlier. This contribution delivers a school-experiment for the synthesis of a semiconducting polymer and presents a successful example of a curricular innovation based on the cooperation between subject science and science education.

Keywords:
OLED conjugated polymers organic semiconductors MEH-PPV future technology

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  Banerji, A.; Tausch, M. W.; Scherf, U., “Fantastic Plastic”. CHEMKON, 19 (1), 7-12, 2012.
 
[2]  Banerji, A., “Organische Elektronik als Lehrstoff”. Nachrichten aus der Chemie, 65 (7-8), 807-809, 2017.
 
[3]  Banerji, A.; Dörschelln, J.; Schwarz, D., “Organische Leuchtdioden im Chemieunterricht”. Chemie in unserer Zeit, in press.
 
[4]  Banerji, A.; Schönbein, A. K.; Wolff, J., “OLED Reloaded: Die Synthese des Halbleiterpolymers MEH‐PPV als Schulversuch”. CHEMKON, 24 (4), 251-256, 2017.
 
[5]  Heeger, A. J., “Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture)”. Angewandte Chemie International Edition, 40 (14), 2591-2611, 2001.
 
[6]  Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)”. Journal of the Chemical Society, Chemical Communications, (16), 578-580, 1977.
 
[7]  Roncali, J., “Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications”. Macromolecular Rapid Communications, 28 (17), 1761-1775, 2007.
 
[8]  Yang, X.; Neher, D., “Polymer electrophosphorescence devices”. Organic Light Emitting Devices: Synthesis, Properties and Applications, 333-367, 2006.
 
[9]  Tang, C. W.; VanSlyke, S., “Organic electroluminescent diodes”. Applied Physics Letters, 51 (12), 913-915, 1987.
 
[10]  Adachi, C.; Tsutsui, T.; Saito, S., “Blue light‐emitting organic electroluminescent devices”. Applied Physics Letters, 56 (9), 799-801, 1990.
 
[11]  Søndergaard, R. R.; Hösel, M.; Krebs, F. C., “Roll‐to‐Roll fabrication of large area functional organic materials”. Journal of Polymer Science Part B: Polymer Physics, 51 (1), 16-34, 2013.
 
[12]  Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., “Light-emitting diodes based on conjugated polymers”. Nature, 347 (6293), 539-541, 1990.
 
[13]  Fink, J. K., High Performance Polymers. William Andrew: 2014.
 
[14]  McDonald, R. N.; Campbell, T. W., “The Wittig Reaction as a Polymerization Method1a”. Journal of the American Chemical Society, 82 (17), 4669-4671, 1960.
 
[15]  Koch, A.; Harrison, N.; Haylett, N.; Daik, R.; Feast, W.; Friend, R., “Enhanced photostability of poly (1, 3-phenylene diphenylvinylene)-derivatives by diphenyl-substitution”. Synthetic Metals, 100 (1), 113-122, 1999.
 
[16]  Krebs, F. C.; Nyberg, R. B.; Jørgensen, M., “Influence of residual catalyst on the properties of conjugated polyphenylenevinylene materials: palladium nanoparticles and poor electrical performance”. Chemistry of Materials, 16 (7), 1313-1318, 2004.
 
[17]  Junkers, T.; Vandenbergh, J.; Adriaensens, P.; Lutsen, L.; Vanderzande, D., “Synthesis of poly (p-phenylene vinylene) materials via the precursor routes”. Polymer Chemistry, 3 (2), 275-285, 2012.
 
[18]  Schwalm, T. Studien zum Mechanismus der GILCH-Polymerisation und zum Ermüdungsverhalten von Poly (p-phenylen-vinylen)en (PPVs) in organischen lichtemittierenden Dioden (OLEDs). Dissertation, TU Darmstadt, 2009.
 
[19]  Gilch, H.; Wheelwright, W., “Polymerization of α‐halogenated p‐xylenes with base”. Journal of Polymer Science Part A: Polymer Chemistry, 4 (6), 1337-1349, 1966.
 
[20]  Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W., “New Insights into the Microstructure of GILCH-Polymerized PPVs”. Macromolecules, 32 (15), 4925-4932, 1999.
 
[21]  Roex, H.; Adriaensens, P.; Vanderzande, D.; Gelan, J., “Identification and Quantification of Polymerization Defects in 13C-Labeled Sulfinyl and Gilch OC1C10−PPV by NMR Spectroscopy”. Macromolecules, 36 (15), 5613-5622, 2003.
 
[22]  Schwalm, T.; Wiesecke, J.; Immel, S.; Rehahn, M., “Toward Controlled Gilch Synthesis of Poly(p-phenylene vinylenes):  Anionic vs Radical Chain Propagation, a Mechanistic Reinvestigation”. Macromolecules, 40 (25), 8842-8854, 2007.
 
[23]  Schwalm, T.; Wiesecke, J.; Immel, S.; Rehahn, M., “The Gilch Synthesis of Poly(p-phenylene vinylenes): Mechanistic Knowledge in the Service of Advanced Materials”. Macromolecular Rapid Communications, 30 (15), 1295-1322, 2009.
 
[24]  Wiesecke, J.; Rehahn, M., “[2.2]Paracyclophanes with Defined Substitution Pattern—Key Compounds for the Mechanistic Understanding of the Gilch Reaction to Poly(p-phenylene vinylene)s”. Angewandte Chemie International Edition, 42 (5), 567-570, 2003.
 
[25]  Schönbein, A.-K.; Wagner, M.; Blom, P. W. M.; Michels, J. J., “Quantifying the Kinetics of the Gilch Polymerization toward Alkoxy-Substituted Poly(p-phenylene vinylene)”. Macromolecules, 50 (13), 4952-4961, 2017.
 
[26]  Banerji, A., http://www.chemiedidaktik.uni-koeln.de/oled.html, last accessed: 15.12.2017.
 
[27]  Design-Based-Research Collective. Educational Researcher, 32(1), 2003.