Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2017, 5(8), 575-578
DOI: 10.12691/jfnr-5-8-7
Open AccessArticle

Proximate Composition, Nutrient Mineral and Fatty Acid of the Bunchosia glandulifera Fruit

Daiane Einhardt Blank1, Sara Fraga1, Mariana Bellaver1, Carla Eliete Iochims dos Santos2, Johnny Ferraz Dias3, Luiz Antônio Mendonça Alves da Costa4 and Neusa Fernandes de Moura1,

1Natural Products Research Group, Federal University of Rio Grande, Santo Antônio da Patrulha, Brazil

2Physics, Statistics and Mathematics Institute, Federal University of Rio Grande, Santo Antônio da Patrulha, Brazil

3Ion Implantation Laboratory, Federal University of Rio Grande do Sul; Porto Alegre, Brazil

4Department of Chemistry, Federal University of Roraima, Boa Vista, RR, Brazil

Pub. Date: July 28, 2017

Cite this paper:
Daiane Einhardt Blank, Sara Fraga, Mariana Bellaver, Carla Eliete Iochims dos Santos, Johnny Ferraz Dias, Luiz Antônio Mendonça Alves da Costa and Neusa Fernandes de Moura. Proximate Composition, Nutrient Mineral and Fatty Acid of the Bunchosia glandulifera Fruit. Journal of Food and Nutrition Research. 2017; 5(8):575-578. doi: 10.12691/jfnr-5-8-7


Bunchosia glandulifera is an exotic species found in southern of Brazil, of which the pulp and toasted seed are much used because of their stimulating properties and nutritional values. However, few scientific data are reported about the chemical composition of the B. glandulifera fruit and the benefits its consumption. The aim of this study was to determine the fatty acid, proximate and mineral composition of the fruit. The results revealed that soluble solids and sugars are present at high concentration in the pulp, whereas the seed predominantly contained protein and ash. According to the particle-induced X-ray emission (PIXE) measurement, the elemental composition revealed that K, P, Ca, and Mg are the most abundant minerals in the fruit. Interestingly, the ingestion of 200 g of the fruit provides 100% of the recommended daily ingestion (RDI) of some elements. Moreover, among the seventeen fatty acids found in the pulp and seed, palmitic acid (C16:0) was found to be the most concentrated.

mineral analysis proximate composition fatty acid Bunchosia glandulifera

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  WHO, World Health Organization. The world health report. 2002. Reducing risks, promoting healthy life. Geneva.
[2]  Lottenberg, A.M.P., “Importance of the dietary fat on the prevention and control of metabolic disturbances and cardiovascular disease”, Arquivos Brasileiros de Endocrinologia & Metabologia, 53: 595. Jun 2009.
[3]  Anderson, W.R. Malpighiaceae (Malpighia Family). Memoirs of The New York Botanical Garden, New York 412-414. 2002.
[4]  Silva, S.F., Blank, D.E., Peixoto, C.R., Moreira, J.J.S., Moura, N.F., “Bioactive Compounds and Antioxidant Activity of Bunchosia glandulífera”, International Journal Food Properties, 19: 467-473. Jun 2016.
[5]  IAL. Institute Adolfo Lutz. Methods for chemical and physical analysis of food, 4th edn. Analytical Standards of the Institute Adolfo Lutz, São Paulo. 2008.
[6]  Bligh, E.G., Dyer, W.J., “A rapid method of total lipid extraction and purification”, Canadian Journal Biochemistry and Physiology, 37: 911-917. August 1959.
[7]  Joseph, J.D., Ackman., R.G., “Capillary column gas chromatographic method for analysis of encapsulated fish oils and fish oil ethyl esters”, Journal of AOAC International , 25: 488. May 1992.
[8]  Johansson, S.A.E., Campbell, J.L., Malmqvist, K.G. Particle-Induced X-ray Emission Spectrometry (PIXE). JohnWiley, New York. 1995.
[9]  Santos, C.E.I., Silva, L.R.M., Boufleur, L.A., Debastiani, R., Stefenon. C.A., Amaral, L., Yoneama, M.L., Dias, J.F., “Elemental characterisation of cabernet sauvignon wines using Particle-Induced X-ray Emission (PIXE)”, Food Chemistry, 121: 244-250. July 2010.
[10]  Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P., Maxwell. J.A. Nuclear Instruments and Methods in Physics Research Section B, 268: 3356. 2010.
[11]  Santos, M.B., Cardoso, R.L., Fonseca, A.A.O., Conceição, M.N., “Caracterização e qualidade de frutos de umbu-cajá (Spondias tuberosa X S. mombin) provenientes do recôncavo sul da Bahia”, Revista Brasileira de Fruticultura, 32: 1089-1097. Dec 2010.
[12]  Lima, A.J.B., Corrêa, A.D., Dantas-Barros, A.M., Nelson, D.L., Amorim, A.C.L., “Sugars, organic acids, minerals and lipids in jabuticaba”, Revista Brasileira de Fruticultura , 33: 540-550. Jun 2011.
[13]  Gondim, J.A.M., Moura, M.F.V., Dantas, A.S., Medeiros, R.L., Santos, K.M., “Composição centesimal e de minerais em cascas de frutas”, Ciência e Tecnologia de Alimentos, 25: 825. Oct 2005.
[14]  Mengel, K. and Kirkby, E.A. Principles of plant nutrition, 4th edn. International Potash Institute, Bern. 1987.
[15]  Cordova, A., Navas, F.J., “Los radicales libres y el daño muscular producido por el ejercicio. Papel de los antioxidantes”, Arch Med Deporte, 76:169-75. Oct 2000.
[16]  Konczak, I., Roulle, P., “Nutritional properties of commercially grown native Australian fruits: Lipophilic antioxidants and minerals”, Food Research International, 44, 2339-2344. August 2011.
[17]  Fimreite, N., Hansen, O.O., Pettersen, H.C., “Aluminum Concentrations in Selected Foods Prepared in Aluminum Cookware and Its Implications for Human Health”, Bulletin of Environmental Contamination and Toxicology, 58: 1-7. Jan 1997.
[18]  Oniwanwa, P.C., Ikadeh, G.C., Nwenze, S.E., “Aluminium contents of some raw and processed Nigerian foods”, Food Chemistry, 58: 351-353. April 1997.
[19]  Robberecht, H., Van Cauwenbergh, R., Van Vlaslaer, V., Hermans, N., “Dietary silicon intake in Belgium: Sources, availability from foods, and human serum levels”, Science of the Total Environment, 407: 4777. May 2009.
[20]  Fenech, M., “The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis”, Mutagenesis, 20: 255-69. Jun 2005.
[21]  Berto, A., Silva, A.F., Visentainer, J.V., Matsushita, M., Souza, N.E., “Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits”, Food Research International, 77: 441-449. November 2015.
[22]  Sales, A.L.C. Synthesis, characterization and thermal analysis of the lithium, sodium and potassium salts of palmitic acid and its ethyl ester. Síntese, Mestrado em Ciências, USP, São Paulo. 2006.
[23]  Castro, H.F., Mendes, A.A., Santos, J.C., Aguiar, C.L., “Modificação de óleos e gorduras por biotransformação”, Química Nova, 27: 146. Feb 2004.
[24]  Cho, K.H., Hong, J.H., Lee, K.T., “Monoacylglycerol (MAG)-oleic acid has stronger antioxidant, anti-atherosclerotic, and protein glycation inhibitory activities than MAG-palmitic acid”, Journal of Medicinal Food, 13: 99-107. Feb 2010.