Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2019, 7(4), 291-302
DOI: 10.12691/jfnr-7-4-6
Open AccessArticle

Goat Milk Whey Improves Nutritional Status, Fecal Microbial Composition and Intestinal Morphology in Female Rats Fed a Westernized Diet and Their Offspring

Barbara Costa Paulino1, Jailane de Souza Aquino2, Evandro Leite de Souza3, Jessyca Alencar de Sousa Gomes3, Priscilla Paulo Lins3, Tamires Alcoforado Sena de Lima3, Eryka Maria dos Santos Alves1 and Elizabeth do Nascimento1,

1Laboratório de Bioquímica da Nutrição, Departamento de Nutrição, Universidade Federal de Pernambuco, UFPE, Recife-PE, Brasil

2Laboratório de Microbiologia de Alimentos, Departamento de Nutrição, Universidade Federal da Paraíba, UFPB, João Pessoa-PB, Brasil

3Laboratório de Nutrição Experimental, Departamento de Nutrição, Universidade Federal da Paraíba, UFPB, João Pessoa-PB, Brasil

Pub. Date: April 07, 2019

Cite this paper:
Barbara Costa Paulino, Jailane de Souza Aquino, Evandro Leite de Souza, Jessyca Alencar de Sousa Gomes, Priscilla Paulo Lins, Tamires Alcoforado Sena de Lima, Eryka Maria dos Santos Alves and Elizabeth do Nascimento. Goat Milk Whey Improves Nutritional Status, Fecal Microbial Composition and Intestinal Morphology in Female Rats Fed a Westernized Diet and Their Offspring. Journal of Food and Nutrition Research. 2019; 7(4):291-302. doi: 10.12691/jfnr-7-4-6


This study evaluated whether supplementation with goat milk whey (GMW) affects the nutritional status, intestinal histology and intestinal microbial composition of female rats fed a westernized diet from gestation to lactation, as well as whether changes can be replicated in the offspring at the end of weaning and at 45 days of life. Pregnant female rats were randomized into four groups: control group (CSAL), control group supplemented with GMW (CGOAT), westernized group (WSAL) or westernized group supplemented with GMW (WGOAT). After weaning, half of offspring were euthanized and the rest of the offspring were maintained under the same treatment applied to dams, up to 45 days of life. Body weight, food intake, intestinal histology and counting of fecal microbial groups were determined in both female rats and offspring. The offspring supplemented with GMW showed decreased body weight at weaning. After weaning, groups supplemented with GMW showed reduced body weight and visceral fat, increased fecal lactobacilli counts in rats and offspring and attenuation of damages induced by the westernized diet on intestinal epithelial cells. GMW supplementation caused a positive effect on fecal microbial composition, intestinal morphology and induced reduction in weight gain and visceral fat in female rats and offspring fed westernized diet. These effects appear to be dependent on the animal’s age and period time of GMW supplementation.

westernized diet goat milk whey nutritional status fecal microbial composition small intestine

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Popkin, B. “The nutrition transition and obesity in the developing world”, Journal of Nutrition, 131(3). 871S-873S. April 2001.
[2]  Sellmann, C., Priebs, J., Landmann, M., Degen, C., Engstler, A., Jin, C.J., Gärttner, S., Spruss, A., Huber, O. and Bergheim, I. “Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time”, Journal of Nutritional Biochemistry, 26 (11). 1183-1192. November 2015.
[3]  Frihauf, J.B., Feket, Em., Nagy, T.R., Levin, B.E., and Zorrilla, E.P. “Maternal Western diet increases adiposity even in male offspring of obesity resistant rat dams: early endocrine risk markers”, American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 311 (6). R1045-R1059. December 2016.
[4]  Zhou, X., Han, D., Xu, R., Li, S., Wu, H., Qu, C., Wang, F., Wang, X. and Zhao, Y. “A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet”, Plos One, 9 (12). e115-148. December 2014.
[5]  Poutahidis, T., Kleinewietfeld, M., Smillie, C., Levkovich, T., Perrotta, A., Bhela, S., Varian, B.J., Ibrahim, Y.M., Lakritiz, J.R., Kearney, S.M., Chatzigiagkos, A., Hafler, D.A., Alm, E.J. and Erdman, S.E. “Microbial reprogramming inhibits western diet-associated obesity”, Plos One, 8 (7). e685-696. July 2013.
[6]  Noble, E. E.; Hsu, T. M.; Kanoski, S. E. “Gut to brain dysbiosis: mechanisms linking western diet consumption, the microbiome, and cognitive impairment”, Frontiers in Behavioral Neuroscience, 11. 9. January 2017.
[7]  Sherwin, Eoin; DINAN, Timothy G.; CRYAN, John F. “Recent developments in understanding the role of the gut microbiota in brain health and disease”, Annals of the New York Academy of Sciences, 1420 (1). 5-25, May 2018.
[8]  Maguire, M., Maguire, G. “Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics”, Reviews in the neurosciences, 30 (2). 178-201. September 2018.
[9]  Boudry, G., Hamilton, M.K., Chichlowski, M., Wickramasinghe, S., Barile, D., Kalanetra, K.M., Mills, D.A., and Raybould, H.E. “Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice”, Journal of Dairy Science, 100 (4). 2471-2481. April 2017.
[10]  Monteiro, N. E., Roquetto, A. R., de Pace, F., Moura, C. S., dos Santos, A., Yamada, A.T., Saad, M.J.A. and Amaya-Farfan, J. “Dietary whey proteins shield murine cecal microbiota from extensive disarray caused by a high-fat diet”, Food Research International, 85. 121-130. July 2016.
[11]  Sprong, R., Schonewille, A. and Van der Meer, R. “Dietary cheese whey protein protects rats against mild dextran sulfate sodium–induced colitis: Role of mucin and microbiota”, Journal of Dairy Science, 93 (4). 1364-1371. April 2010.
[12]  Gonai, M., Shigehisa, A., Kigawa, I., Kurasaki, K., Chonan, O., Matsuki, T., Yoshida, Y., Aida, M., Hamano, K. and Terauchi, Y. “Galacto-oligosaccharides ameliorate dysbiotic Bifidobacteriaceae decline in Japanese patients with type 2 diabetes”, Beneficial Microbes, 8 (5). 705-716. September 2017.
[13]  Quigley, E. 2011. “Prebiotics and Probiotics: Their role in the management of gastrointestinal disorders in adults”, Nutritional in Clinical Practice, 27 (2). 195-200. November 2011.
[14]  Martinez-Ferez, A., Rudloff, S., Guadix, A., Henkel, C., Pohlentz, G., Boza, J.J., Guadix, E.M., and Kunz, C. “Goats’ milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology”, International Dairy Journal, 16 (2). 173-181. February 2006.
[15]  Sanmartín, B., Díaz, O., Rodríguez-Turienzo, L. and Cobos, A. “Composition of caprine whey protein concentrates produced by membrane technology after clarification of cheese whey”, Small Ruminant Research, 105 (1-3): 186-192. June 2012.
[16]  Power, M. L. and Schulkin, J. “Maternal regulation of offspring development in mammals is an ancient adaptation tied to lactation”, Applied Translational Genomics, 2. 55-63. December 2013.
[17]  Bayne, K. “Revised guide for the care and use of laboratory animals available. American Physiology Society”. Physiologist, 39 (199). 208-211. 1996.
[18]  Association of Official Agricultural Chemistry (AOAC). Official methods of analysis the of Association of Analytical Chemists International. 23th ed. Gaithersburg. Maryland: AOAC, 2012.
[19]  American Public Health Association (APHA). Compendium of methods for the microbiological examination of foods. 4th ed. Washington: APHA, 2001.
[20]  Reeves, P.G., Nielsen, F.H. and Fahey, G.C.J. “AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet”, Journal of Nutrition, 123 (11). 1939-1951. November 1993.
[21]  Afuwape, A. O., Turner, M.W. and Strobel, S., “Oral administration of bovine whey proteins to mice elicits opposing immunoregulatory responses and is adjuvant dependent”, Clinical and Experimental Immunology, 136 (1). 40-48. March 2004.
[22]  Novelli, E.L., Diniz, Y.S., Galhardi, C.M., Ebaid, G.M., Rodrigues, H.G., Mani, F., Fernandes, A.A., Cicogna, A.C., and Novelli Filho, J.L. “Anthropometrical parameters and markers of obesity in rats”, Laboratory Animal, 41 (1).111-119. January 2007.
[23]  Kim, K., Ong, J., Okuno, O. “The effect of filler loading and morphology on the mechanical properties of contemporary composites”, The Journal of prosthetic dentistry, 87 (6). 642-649. June 2002.
[24]  Ferro Cavalcante, T., da Silva, A.M., Lira, M., Almeida, L.A., Marques, A., and Nascimento E. “Early exposure of dams to a westernized diet has long-term consequences on food intake and physiometabolic homeostasis of the rat offspring”, International Journal Food Science and Nutrition, 65 (8). 989-993. September 2014.
[25]  Tranberg, B., Hellgren, L., Lykkesfeldt, J., Sejrsen, K., Jeamet, A., Rune, I., Ellekilde, M., Nielsen, D.S. and Hansen, A.K. “Whey protein reduces early life weight gain in mice fed a high-fat diet”, Plos One, 8 (8). e714-739. August 2013.
[26]  Brandelli, A., Daroit, J.A., and Corrêa, A.P.F. “Whey as a source of peptides with remarkable biological activities”, Food Research International, 73. 149-161. July 2015.
[27]  Vrieze, A., Holleman, F., Zoetendal, E., De Vos, W., Hoekstra, J. and Nieuwdorp, M. “The environment within: how gut microbiota may influence metabolism and body composition”, Obesity and Metabolism, 53 (4). 606-613. January 2010.
[28]  Kobayashi, Y., Yuuki, S., Eri, M., Azusa, T., Naoki, Y., Hajime, N., Akio, Y., Koji, Y., Fumiaki, A. and Takashi, N. "Supplementation of protein-free diet with whey protein hydrolysates prevents skeletal muscle mass loss in rats”, Journal of Nutrition & Intermediary Metabolism, 4. 1-5. June 2016.
[29]  Zapata R. C., Singh A. and Chelikani P. K. “Peptide YY mediates the satiety effects of diets enriched with whey protein fractions in male rats”, The FASEB Journal, 32 (2). 850-861, 2017.
[30]  Bautista, C., Montaño, S., Ramirez, V., Morales, A., Nathanielsz, P., Bobadilla, N., and Zambrano, E. “Changes in milk composition in obese rats consuming a high-fat diet”, British Journal of Nutrition, 115 (3). 538-546. November 2015.
[31]  Thum, C., McNabb, W., Young, W., Cookson, A., Roy, N. “Prenatal caprine milk oligosaccharide consumption affects the development of mice offspring”, Molecular Nutrition and Food Research, 60 (9). 2076-2085. April 2016.
[32]  Ferro Cavalcante, T., da Silva, J.L., da Silva, A.M., Muniz, G., da Luz Neto, L., Lopes de Souza, S., Manhães de Castro, R., Ferraz, K.M., and Nascimento, E. “Effects of a westernized diet on the reflexes and physical maturation of male rat offspring during the perinatal period”, Lipids, 48 (11). 1157-1168. September 2013.
[33]  Lee, J.H., Friso, S., and Choi, S.W. “Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition”, Nutrients, 6 (8). 3303-3325. August 2014.
[34]  Clément, L., Poirier, H., Niot, I., Bocher, V., Guerre-Millo, M., Krief, S., Staels, B. and Besnard, P. “Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse”, Journal of Lipid Research, 43 (9). 1400-1409. 2002.
[35]  Nagao, K., Inoue, N., Wang, Y.M., Shirouchi, B. and Yanagita, T. “Dietary conjugated linoleic acid alleviates nonalcoholic fatty liver disease in Zucker (fa/fa) rats”, The Journal of Nutrition, 135 (1), 9-13, 2005. January 2005.
[36]  Pachikian, B. D., Druart, C., Catry, E., Bindels, L.B., Neyrinck, A.M., Larondelle, Y., Cani, P.D. and Delzenne, N.M. “Implication of trans-11, trans-13 conjugated linoleic acid in the development of hepatic steatosis”, Plos one, 13 (2). e0192447. February 2018.
[37]  de Meijer, V. E., Le, H. D., Meisel, J. A., Sharif, M. R. A., Pan, A., Nosé, V., and Puder, M. “Dietary fat intake promotes the development of hepatic steatosis independently from excess caloric consumption in a murine model”, Metabolism, 59 (8). 1092-1105. August 2010.
[38]  Cordero, P., Campion, J., Milagro, F.I., Martinez, J.A. “Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: effect of dietary methyl donor supplementation”, Molecular Gentics and Metbolism, 110 (3). 388-395. November 2013.
[39]  Bellentani, S. “The epidemiology of non‐alcoholic fatty liver disease”, Liver International, 37 (Suppl. 1). 81-84. January 2017.
[40]  Rodrigues, R., Soares, J., Garcia, H., Nascimento, C., Medeiros, M., Bomfim, M., Medeiros, M.C. and Queiroga, R. “Goat milk fat naturally enriched with conjugated linoleic acid increased lipoproteins and reduced triacylglycerol in rats”, Molecules, 19 (3). 3820-3831. March 2014.
[41]  Ley, R., Backhed, F., Turnbaugh, P., Lozupone, C., Knight, R., and Gordon, J. “Obesity alters gut microbial ecology”, Proceedings of the National Academy of Sciences, 102 (31). 11070-11075. August 2005.
[42]  Paturi, G., Butts, C.A., Hedderley, D., Stoklosinski, H., Martell, S., Dinnan, H. and Carpenter, E.A. “Goat and cow milk powder-based diets with or without prebiotics influence gut microbial populations and fermentation products in newly weaned rats”, Food Bioscience. 24. 73-79. August 2018.
[43]  Lara-Villoslada, F., Debras, E., Nieto, A., Concha, A., Gálvez, J., López-Huertas, E., Boza, J., Obled, C., and Xaus, J. “Oligosaccharides isolated from goat milk reduce intestinal inflammation in a rat model of dextran sodium sulfate-induced colitis”, Clinical Nutrition, 25 (3). 477-48. June 2006.
[44]  Agus, A, Denizot, J., Thévenot, J., Massier, S., Billard, E., Denis, S., Darfeulli- Michaud, A., and Barnich, N. “Tu1735 Western diet alters gut microbiota homeostasis, increasing host susceptibility to intestinal inflammation”, Gastroenterology, 146 (5). S-829. 2014.