Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2018, 6(12), 731-739
DOI: 10.12691/jfnr-6-12-3
Open AccessArticle

In-vitro Approach for the Determination of Antioxidant and Anti-inflammatory Activity of Wild Marjoram (Thymus mastichina L.)

Carmen Asensio-Vegas1, Manel Ben Khedim1, Daniel Rico1, Nigel Brunton2, Dilip Rai3, Mohammad Hossain3 and Ana Belen Martin-Diana1,

1Agricultural Technological Institute of Castilla and Leon, Government of Castilla and Leon, Spain

2School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland

3Department of Food Biosciences, Teagasc Food Research Centre Ashtown, Dublin 15, Ireland

Pub. Date: December 19, 2018

Cite this paper:
Carmen Asensio-Vegas, Manel Ben Khedim, Daniel Rico, Nigel Brunton, Dilip Rai, Mohammad Hossain and Ana Belen Martin-Diana. In-vitro Approach for the Determination of Antioxidant and Anti-inflammatory Activity of Wild Marjoram (Thymus mastichina L.). Journal of Food and Nutrition Research. 2018; 6(12):731-739. doi: 10.12691/jfnr-6-12-3

Abstract

In the present study, it was investigated the antioxidant, anti-inflammatory properties of marjoram extracts and identified the major phenolic compounds which that may be responsible for these properties. Extracts of T. mastichina exhibited high antioxidant and anti-inflammatory activity. Methanol extracts showed higher antioxidant activity in comparison with ethanol and water extracts. The total phenolic content (195.71 ± 4.07 GAE/g dry extract) and the DPPH free radical scavenging activity (58.85 ± 0.52 g Trolox/100 g of dry weight extract) showed higher antioxidant activity than marjoram from the Portuguese region and an EC50 (0.028 mg/mL) superior to the synthetic antioxidant (BHT). T. mastichina was found to be a strong semicarbazide (SSAO) inhibitor with an EC50 one thousand times stronger than SSAO. Among polyphenols, flavonoids, mainly luteolin and quercetin, were the major constituents of the plant extracts and were present at levels of 6.22 and 5.46 μg kaempferol/mg DWE, respectively.

Keywords:
marjoram polyphenols antioxidant anti-inflammatory

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Morales, V.M. 2005. Floraliteraria del Quijote alusiones al mundo vegetal en las obras completas de cervantes. Instituto de Estudios Albacetences “Don Juan Manuel”. 200.
 
[2]  Amiri, H. (2012). Essential oils composition and antioxidant properties of three thymus species. Evidence-Based Complementary and Alternative Medicine.
 
[3]  Jia, H.L., Ji, Q.L., Xing, S.L., Zhang, P.H., Zhu, G.L., & Wang, X.H. (2010). Chemical composition and antioxidant, antimicrobial activities of the essential oils of Thymus marschallianus Will. and Thymus proximus Serg. Journal of food science, 75(1), 59-65.
 
[4]  Delgado, T., Marinero, P., Asensio-S-Manzanera, M. C., Asensio, C., Herrero, B., Pereira, J.A., & Ramalhosa, E. (2014). Antioxidant activity of twenty wild Spanish Thymus mastichina L. populations and its relation with their chemical composition. Food Science and Technology, 57(1), 412-418.
 
[5]  Blanco, S.J. (2007). Folia Botanica Extremadurensis. 1.
 
[6]  Bento, F., Galego, L., Gonçalves, V., Cavac, T., Almeida, V., & Margarida, C. (2006). Headspace solid-phase microextraction gas chromatography and gas chromatography-mass spectrometry analysis of the volatile compounds during packing of: Calamintha baetica, Thymus mastichina and Origanum vulgare. Traditional Food Processing and Techological Innovation in the Peripheral Regions.
 
[7]  Sengupta, A & Bhattacharjee, S. (2009). Cardamom (Elettaria cardamomum) and its active constituent, 1,8-cineole. In: Molecular targets and therapeutic uses of spices (Modern Uses for Ancient Medecines), (eds, Aggarwal, B.B and Kunnumakkara, Singapore, London: WorldScientific Publishing.
 
[8]  Nair, H.B., Sung, B., Yadav, V.R., Kannappan, R., Chaturvedi, M.M., & Aggarwal, B.B. (2010). Delivery of antiinflammatory nutraceuticals by nanoparticules for the prevention and treatment of cancer. Biochemical Pharmacology, 80(12), 1833-1843.
 
[9]  Siriwardhana, N., Kalupahana, N.S., Cekanova, M., LeMieux, M., Greer, B., & Moustaid-Moussa, N. (2013). Modulation of adipose tissue inflammation by bioactive food compounds. Journal of Nutritional Biochemistry, 24, 613-623.
 
[10]  Rahman, K. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2(2), 219-236.
 
[11]  Dashwood, R.H. (2007). Frontiers in polyphenols and cancer prevention. J. Nutr, 137: 267S-269S.
 
[12]  Pandey, K.B & rizvi, K.K. (2009). Plant polyphenols as dietary antioxidants in humanhealth and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270-278.
 
[13]  Vauzour, D., Rodriguez-Mateos, A., Corona, G., Oruna-Concha, M.J., & Spencer, J.P.E. (2010). Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients, 2(11), 1106-1131.
 
[14]  Mink, P.J., Scrafford, C.G., Barraj, L.M., Harnack, L., Hong, C.P., Nettleton, J.A., & Jacobs, D.R. (2007). Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am J Clin Nutr, 85(3), 895-909.
 
[15]  Mitjavila, M.T & Moreno, J.J. (2012). The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of highprevalence diseases. Biochemical Pharmacology, 84(9), 1113-1122.
 
[16]  Chahar, M.K., Sharma, N., Dobhal, M.P., & Joshi, Y.C. (2011). Flavonoids: A versatile source of anticancer drugs. Pharmacogn Rev, 5(9), 1-12.
 
[17]  Singleton, V.L,, Orthofer, R., & Lamuela-Raventos, R.M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol, 299, 152-178.
 
[18]  Sánchez-Moreno, C. (2002). Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Tech Int, 8(3), 121-137.
 
[19]  Hossain, M.B., Brunton, N.P., Barry-Ryan, C., Martin-Diana, A.B., & Wilkinson, M. (2008). Antioxidant activity of spice extracts and phenolics in comparison to synthetic antioxidants. Rasayan J. Chem, 1(4), 751-756.
 
[20]  Roby, M.H.H, Sarhana, M.A., Selima, K.A-H., & Khalela, K.I. (2013). Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products, 43, 827-831.
 
[21]  Albano, S.M & Miguel, M.G. (2011). Biological activities of extracts of plants grown in Portugal. Industrial Crops and Products, 33, 338-343.
 
[22]  Barros, L., Heleno, S.A., Carvalho, A.M., & Ferreira, I.C.F.R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. Food Science and Technology, 43, 544-550.
 
[23]  Lagouri, V., Bantouna, A., & Stathopoulos, P. (2010). A comparison of the antioxidant activity and phenolic content of non polar and polar extracts obtained from four endemic Lamiaceae species grown in Greece. Journal of Food Processing and Preservation, 34(5), 872-886.
 
[24]  Rababah, T.M., Banat, F., Rababah, A., Ereifej, K., &Yang, W. (2010). Optimization of Extraction Conditions of Total Phenolics, Antioxidant Activities and Anthocyanin of Oregano, Thyme Terebinth, and Pomegranate. Journal of Food Science, 75(7), C626-C632.,
 
[25]  Hinneburg, I., Dorman, D., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122-129.
 
[26]  Dorman, D.H.J., Bachmayer, O., Kosar, M., & Hiltunen, R. (2004). Antioxidant Properties of Aqueous Extracts from Selected Lamiaceae Species Grown in Turkey. J. Agric. Food Chem, 52(4), 762-770.
 
[27]  Wong, S.P., Leong, L.P., & Koh, J.H.W. (2005). Antioxidant activities of aqueous extracts of selected plants. Food Chemistry, 99(4), 775-783.
 
[28]  Hossain, M.B., Barry-Ryan, C., Martin-Diana, A.B., & Brunton, N.P. (2010a). Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry, 123(1), 85-91.
 
[29]  Hossain, M. B., Brunton, N.P., Barry-Ryan, C., Martin-Diana, A.B and Wilkinson, M. (2010b). Characterization of phenolics composition in Lamiaceae spices by LC-ESIMS/ MS. J. Agric. Food Chem, 58 (19), 10576-10581.
 
[30]  Materska, Małgorzata. (2008). Quercetin and its derivates: Chemical structure and bioactivity. Pol. J. Food Nutr. Sci, 58(4), 407-413.
 
[31]  Özgen, U., Mavi, A., Terzi, Z., Kazaz, C., Asçı, A., Kaya, Y., & Seçen, H. (2011). Relationship between chemical structure and antioxidant activity of luteolin and its glycosides isolated from Thymus sipyleus subsp. sipyleus var. sipyleus. Rec. Nat. Prod, 5(1), 12-21.
 
[32]  Majewska, M., Skrzycki, M., Podsiad, M., & Czeczot, H. (2011). Evaluation Pharmaceutica Drug Research, 68(4), 611-615.
 
[33]  Lin, S.Y., Wang, C.C., Lu, Y.L., Wud, W.C., & Hou, W.C. (2008). Antioxidant, antisemicarbazide- sensitive amine oxidase, and anti-hypertensive activities of geraniin isolated from phyllanthus urinaria. Food and Chemical Toxicology, 46(7), 2485-2492.
 
[34]  Brewer, M.S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 10(4), 221-247.
 
[35]  Sørensen, A-D.M., Petersen, L.K., de Diego, S., Nielsen, N.S., Lue, B-M., Yang, Z , Xu, X., & Jacobsen, C. (2012). The antioxidative effect of lipophilized rutin and dihydrocaffeic acid in fish oil enriched milk. Eur. J. Lipid Sci. Technol, 114(4), 434-445.
 
[36]  Abad-García, B., Berrueta, L.A., Garmón-Lobato, S., Gallo, B and Vicente, F. (2009). A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216, 5398-5415.
 
[37]  Pereira, O. R., & Cardoso, S. M. (2013). Overview on Mentha and Thymus polyphenols.Current Analytical Chemistry, 9(3), 382-396.
 
[38]  Kaiser, A., Carle, R., & Kammerer, D.R. (2013). Effects of blanching on polyphenol stability of innovative paste-like parsley (Petroselinum crispum Mill., Nym ex A. W Hill) and marjoram (Origanum majorana L.) products. Food Chemistry, 138(2-3), 1648-1656.
 
[39]  Bravo, L. (1998). Polyphenols: Chemistry, dietary osurces, metabolism, and nutritional significance. Nutrition Reviews, 56(11).
 
[40]  Rice-Evans, CA., Miller, NJ., & Paganga, G. (1997). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 20(7), 933-956.
 
[41]  Wojdyło, A., Oszmianski, J and Czemerys, R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105, 940-949.
 
[42]  Shen, Q., Zhang, B., Xu, R., Wang, Y., Ding, X., & Li, P. (2010). Antioxidant activity in vitro of selenium contained protein from the se-enriched. Bifodobacterium animalis. Anaerobe, 16, 380-386.
 
[43]  Kaiser, A., Carle, R & Kammerer, D.R. (2013). Effects of blanching on polyphenol stability of innovative paste-like parsley (Petroselinum crispum Mill., Nym ex A. W Hill) and marjoram (Origanum majorana L.) products. Food Chemistry, 138(2-3), 1648-1656.