[1] | Mendel, L.B., Observations on vegetable proteolytic enzymes, with special reference to papain. American Journal of the Medical Sciences, 1902. 124: p. 310-318. |
|
[2] | Murachi, T. and H. Neurath, Fractionation and specificity studies on stem bromelain. Federation Proceedings, 1959. 18(1): p. 291-291. |
|
[3] | Baker, E.N., Preliminary crystallographic data for actinidin, a thiol protease from actinidia-chinensis. Journal of Molecular Biology, 1973. 74(3): p. 411-412. |
|
[4] | Chalabi, M., et al., Proteolytic Activities of Kiwifruit Actinidin (Actinidia deliciosa cv. Hayward) on Different Fibrous and Globular Proteins: A Comparative Study of Actinidin with Papain. Applied Biochemistry and Biotechnology, 2014. 172(8): p. 4025-4037. |
|
[5] | Sugiyama, S., et al., Enzymatic properties, substrate specificities and pH-activity profiles of two kiwifruit proteases. Journal of Nutritional Science and Vitaminology, 1997. 43(5): p. 581-589. |
|
[6] | Bekhit, A.A., et al., Exogenous Proteases for Meat Tenderization. Critical Reviews in Food Science and Nutrition, 2014. 54(8): p. 1012-1031. |
|
[7] | Ha, M., et al., Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 2012. 134(1): p. 95-105. |
|
[8] | Hanada, K., et al., Isolation and characterization of e-64, a new thiol protease inhibitor. Agricultural and Biological Chemistry, 1978. 42(3): p. 523-528. |
|
[9] | Karolin, J., et al., Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (bodipy) derivatives in liquids, lipid-membranes, and proteins. Journal of the American Chemical Society, 1994. 116(17): p. 7801-7806. |
|
[10] | Jones, L.J., et al., Quenched BODIPY dye-labeled casein substrates for the assay of protease activity by direct fluorescence measurement. Analytical Biochemistry, 1997. 251(2): p. 144-152. |
|
[11] | Barrett, A.J., et al., L-trans-epoxysuccinyl-leucylamido(4-guanidino)butane (e-64) and its analogs as inhibitors of cysteine proteinases including cathepsins b, h and l. Biochemical Journal, 1982. 201(1): p. 189-198. |
|
[12] | Martin, H., Quantification of Functional Actinidin in Whole Kiwifruit Extract Using the Selective Cysteine Proteinase Inhibitor E-64. Journal of Food and Nutrition Research, 2016. 4(4): p. 243-250. |
|
[13] | Good, N.E., et al., Hydrogen ion buffers for biological research. Biochemistry, 1966. 5(2): p. 467. |
|
[14] | Kaur, L., et al., Actinidin Enhances Gastric Protein Digestion As Assessed Using an in Vitro Gastric Digestion Model. Journal of Agricultural and Food Chemistry, 2010. 58(8): p. 5068-5073. |
|
[15] | Rutherfurd, S.M., et al., Effect of actinidin from kiwifruit (Actinidia deliciosa cv. Hayward) on the digestion of food proteins determined in the growing rat. Food Chemistry, 2011. 129(4): p. 1681-1689. |
|
[16] | Dressman, J.B., et al., Upper gastrointestinal (GI) pH in young, healthy-men and women. Pharmaceutical Research, 1990. 7(7): p. 756-761. |
|
[17] | Scott, M.L. and C.M. Whitton, Standardization of papain reagents by measurement of active-sites using a synthetic inhibitor, e-64. Transfusion, 1988. 28(1): p. 24-28. |
|