[1] | Guisbiers, G.; Mejia-Rosales, S.; Khanal, S.; Ruiz-Zepeda, F.; Whetten, R. L.; José-Yacaman, M. Gold-Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation. Nano Lett. 14. 6718-6726. 2014. |
|
[2] | Sim, K.; Lee, J. Phase stability of Ag-Sn alloy nanoparticles. J. Alloys Compounds 590. 140-146. 2014. |
|
[3] | Sopoušek, J.; Vřešťál, J.; Pinkas, J.; Brož, P.; Buršík, J.; Stýskalík, A.; Škoda, D.; Zobač, O.; Lee, J. Cu-Ni nanoalloy phase diagram - Prediction and experiment. CALPHAD 45. 33-39. 2014. |
|
[4] | Kroupa, A.; Káňa, T.; Buršík, J.; Zemanová, A.; Šob, M. Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn. Phys. Chem. Chem. Phys. 17. 28200-28210. 2015. |
|
[5] | Ghasemi, M.; Zanolli, Z.; Stankovski, M.; Johansson, J. Size- and shape-dependent phase diagram of In-Sb nano-alloys. Nanoscale 7. 17387-17396. 2015. |
|
[6] | Du, J.; Zhao, R.; Xue, Y. Effects of sizes of nano-copper oxide on the equlibrium constant and thermodynamic properties for the reaction in nanosystem. J. Chem. Thermodynamics 45. 48-52. 2012. |
|
[7] | Du, J.; Zhao, R.; Xue, Y. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study. J. Chem. Thermodynamics 55. 218-224. 2012. |
|
[8] | Cui, Z.; Duan, H.; Li, W.; Xue, Y. Theoretical and experimental study: the size dependence of decomposition thermodynamics of nanomaterials. J. Nanopart. Res. 17. 321 (11 pp.). 2015. |
|
[9] | Li, W.; Cui, Z.; Duan, H.; Xue, Y. Effect of Nanoparticle size on the thermal decomposition thermodynamics in theory and experiment. Appl. Phys. A 122. 99 (12 pp.). 2016. |
|
[10] | Kaptay, G. The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials. J. Nanosci. Nanotechnol. 12. 2625-2633. 2012. |
|
[11] | Kaptay, G. Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J. Mater. Sci. 47. 8320-8335. 2012. |
|
[12] | Makkonen, L. Comments on “The Gibbs Equation versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials”. Adv. Sci. Focus 1. 367-368. 2013. |
|
[13] | Lee, J.; Sim, K.J., General equations of CALPHAD-type thermodynamic description for metallic nanoparticle systems. CALPHAD 44. 129-132. 2014. |
|
[14] | Guenther, G.; Guillon, O. Models of size-dependent nanoparticle melting tested on gold. J. Mater. Sci. 49. 7915-7932. 2014. |
|
[15] | Bajaj, S.; Haverty, M. G.; Arróyave, R.; Goddard III FRSC, W. A.; Shankare, S. Phase stability in nanoscale material systems: extension from bulk phase diagrams Nanoscale, 7. 9868-9877. 2015. |
|
[16] | Blinder, S.M. Mathematical method in elementary thermodynamics. J. Chem. Education 43. 85-92. 1966. |
|
[17] | Letellier, P.; Mayaffre, A.; Turmine, M. Nonextensive approach to thermodynamics: Analysis and suggestion, and application to chemical reactivity. J. Phys. Chem. B 108. 18980-18987. 2004. |
|
[18] | Letellier, P.; Mayaffre, A.; Turmine, M. Solubility of nanoparticles: nonextensive thermodynamics approach J. Phys.: Condens. Matter 19. 436229 (9 pp). 2007. |
|
[19] | Letellier, P.; Mayaffre, A.; Turmine, M. Melting point depression of nanosolids: Nonextensive thermodynamics approach. Phys. Rev. B 76. 045428 (8 pp). 2007. |
|
[20] | Cammarata, R.C. Generalized thermodynamics of surfaces with applications to small solid systems. in Solid State Physics. 61. 1-75. 2009. |
|
[21] | Leitner, J.; Sedmidubský, D. Thermodynamic equilibria in system with nanoparticles. in Thermal Physics and Thermal Analysis. Springer International Publishing, 2017. 385-402. |
|