World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: https://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2017, 5(2), 78-85
DOI: 10.12691/wjce-5-2-7
Open AccessArticle

Relationship between Antioxidant Capacity and Food Chemistry

Caroline Gaucher1, Pierre Leroy1 and Ariane Boudier1,

1Université de Lorraine, CITHÉFOR, EA 3452, Faculty of Pharmacy, BP 80403, F-54001 Nancy Cedex, France

Pub. Date: April 07, 2017

Cite this paper:
Caroline Gaucher, Pierre Leroy and Ariane Boudier. Relationship between Antioxidant Capacity and Food Chemistry. World Journal of Chemical Education. 2017; 5(2):78-85. doi: 10.12691/wjce-5-2-7

Abstract

A practical experiment devoted to study the properties of common foods (lemon, tea and garlic) containing antioxidant molecules is presently described. The experimental part was based on four main steps: (i) realization of calibration curves with standard antioxidants reacting with the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH•), (ii) quantitation of antioxidant molecules in food extracts, and (iii) determination of food extract antioxidant capacity vs. DPPH•, which (iv) was linked to the content of antioxidant molecules in each food extract. The educational approach was based on both conceptual thermodynamic processes and on practical knowledge on food chemistry and also diet related to healthcare. As a result, in addition to gain experience in simple spectroscopic methods, students went deeper in the understanding of the redox mechanisms devoted to oxidative stress basic learning.

Keywords:
11-diphenyl-2-picryl-hydrazyl radical food extract redox UV-visible spectrophotometry spectrofluorimetry antioxidant content

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Salmon, A.B.; Richardson, A., Perez, V.I. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radic. Biol. Med. 2010, 48 (5), 642-655.
 
[2]  Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39 (1), 44-84.
 
[3]  Berger, R.G.; Lunkenbein, S.; Stroehle, A.; Hahn, A. Antioxidants in Food: Mere Myth or Magic Medicine? Crit. Rev. Food Sci. Nutr. 2012, 52 (1-3), 162-171.
 
[4]  Sies, H. Biochemistry of Oxidative Stress. Angew. Chem.-Int. Ed. Engl. 1986, 25 (12), 1058-1071.
 
[5]  Kalyanaraman, B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 2013, 1 (1), 244-257.
 
[6]  Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 96, 55-74.
 
[7]  Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2001, 30 (11), 1191-1212.
 
[8]  Brandwilliams, W.; Cuvelier, M.; Berset, C. Use of a Free-Radical Method to Evaluate Antioxidant Activity. Food Sci. Technol.-Lebensm.-Wiss. Technol. 1995, 28 (1), 2530.
 
[9]  Musialik, M.; Litwinienko, G. Scavenging of DPPH• by vitamin E is accelerated by its partial ionization: The role of sequential proton loss electron transfer. Org. Lett. 2005, 7 (22), 4951-4954.
 
[10]  Foti, M.C.; Daquino, C.; Mackie, I.D.; DiLabio, G.A.; Ingold, K.U. Reaction of Phenols with the 2,2-Diphenyl-1-picrylhydrazyl Radical. Kinetics and DFT Calculations Applied To Determine ArO-H Bond Dissociation Enthalpies and Reaction Mechanism. J. Org. Chem. 2008, 73 (23), 9270-9282.
 
[11]  Viirlaid, S.; Mahlapuu, R.; Kilk, K.; Kuznetsov, A.; Soomets, U.; Jaerv, J. Mechanism and stoichiometry of 2,2-diphenyl-1-picrylhydrazyl radical scavenging by glutathione and its novel alpha-glutamyl derivative. Bioorganic Chem. 2009, 37 (4), 126-132.
 
[12]  Noipa, T.; Srijaranai, S.; Tuntulani, T.; Ngeontae, W. New approach for evaluation of the antioxidant capacity based on scavenging DPPH free radical in micelle systems. Food Res. Int. 2011, 44 (3), 798806.
 
[13]  Garrido, J.; Manuela Garrido, E.; Borges, F. Studies on the Food Additive Propyl Gallate: Synthesis, Structural Characterization, and Evaluation of the Antioxidant Activity. J. Chem. Educ. 2012, 89 (1), 130-133.
 
[14]  Gonzalez-Molina, E.; Moreno, D.A.; Garcia-Viguera, C. A new drink rich in healthy bioactives combining lemon and pomegranate juices. Food Chem. 2009, 115 (4), 1364-1372.
 
[15]  Hoch, M.A.; Russell, C.B.; Steffen, D.M.; Weaver, G.C.; Burgess, J.R. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students. J. Chem. Educ. 2009, 86 (5), 595-597.
 
[16]  Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouysegu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem.-Int. Ed. 2011, 50 (3), 586-621.
 
[17]  Rahman, K. Garlic and aging: new insights into an old remedy. Ageing Res. Rev. 2003, 2 (1), 39-56.
 
[18]  Boudier, A.; Tournebize, J.; Bartosz, G.; El Hani, S.; Bengueddour, R.; Sapin-Minet, A; Leroy, P. High-performance liquid chromatographic method to evaluate the hydrogen atom transfer during reaction between 1,1-diphenyl-2-picryl-hydrazyl radical and antioxidants. Anal. Chim. Acta. 2012, 711, 97-106.
 
[19]  European Pharmacopoeia, Department for the Quality of Medicines, Part 2.2.25. Spectrophotométrie d’absorption dans l’ultraviolet et le visible, Strasbourg, In: 8e éd. 2008.
 
[20]  Wu, X.; Diao, Y.X.; Sun, C.X.; Yang, J.H.; Wang, Y.B.; Sun, S.N. Fluorimetric determination of ascorbic acid with o-phenylenediamine. Talanta. 2003, 59 (1), 95-99.
 
[21]  Magalhaes, L.M.; Santos, F.; Segundo, M.A.; Reis, S.; Lima, J.L.F.C. Rapid microplate high-throughput methodology for assessment of Folin-Ciocalteu reducing capacity. Talanta. 2010, 83 (2), 441-447.
 
[22]  Ellman, G., A Colorimetric Method for Determining Low Concentrations of Mercaptans. Arch. Biochem. Biophys. 1958, 74, 443-450.
 
[23]  ICH Guidelines Q2(R1): Note for Guidance on Validation of Analytical Procedures: Text and Methodology Ref. CPMP/ICH/381/95, available 2017 January 25th on the website: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002662.pdf.