World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: https://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2025, 13(1), 19-29
DOI: 10.12691/wjce-13-1-4
Open AccessArticle

Optical and Raman Experiments for the Electro-organic Synthesis of Bromothymol Blue and Bromophenol Blue

Achim Habekost1,

1Department of Chemistry Didactics, University of Education, Ludwigsburg, Germany

Pub. Date: March 01, 2025

Cite this paper:
Achim Habekost. Optical and Raman Experiments for the Electro-organic Synthesis of Bromothymol Blue and Bromophenol Blue. World Journal of Chemical Education. 2025; 13(1):19-29. doi: 10.12691/wjce-13-1-4

Abstract

Recently, a Journal of Chemistry Didactics claimed that bromothymol blue and bromophenol blue could be prepared in situ by oxidation of bromide to bromine, which subsequently reacts with thymol blue and phenol red, respectively. The hypothesis has now been unequivocally confirmed by absorbtovoltammetry and Raman voltammetry. The substitution of bromine by bromide is an important contribution to experiments with less hazardous materials in chemistry education. In Germany, students are not allowed to experiment with bromine. On the other hand, there are many experiments that use bromine. Therefore, the in situ electrochemical generation of bromine from bromide can be a good alternative in terms of green chemistry.

Keywords:
Ramanspectroscopy Electrochemistry Electro-organic Synthesis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 14

References:

[1]  S.B. Beil, S.R. Waldvogel (2024). Trendbericht Organische Chemie 2023, Nachrichten aus der Chemie, 72, March, 47-49.
 
[2]  J. Menig, H.J., Bader, H.J. Flintjer (1998). Unerwartete Reaktionswege bei der Kolbe-Elektrolyse Organische Elektrochemie im Chemieunterricht Chemkon 5/4, 174-180.
 
[3]  P. Lanfermann, C. Weidmann, T. Schüler, T. Waitz (2021). Int. conference. New Perspectives in Science Education. 10th Conference Edition (pp. 50-56). Filodiritto Publisher.
 
[4]  M. Ducci (2024). Elektroorganische Synthesen: Bromierung von Thymolblau und Phenolrot, Chemkon 31/1, 15-21.
 
[5]  M. Ducci (2023). Bromierung von Fluorescein – Elektrophile aromatische Substitution beim elektrochemischen Schreiben, Chemkon 30/4, 167-170.
 
[6]  S. Schlücker (Ed.) (2011). Surface Enhanced Raman Spectroscopy, Analytical, Biophysical and Life Science Applications, Wiley-VCH, Weinheim.
 
[7]  E. Smith, G. Dent (2019). Modern Raman Spectroscopy. A Practical Approach, Wiley, Hoboken.
 
[8]  P.C. Lee, D. Meisel (1982). Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem. 86, 3391-3395.
 
[9]  M.T.F. Abedul, M. T. F. (2020). Laboratory Methods in Dynamic Electroanalysis, Elsevier, Amsterdam.
 
[10]  D. Martin-Yerga, A. Perez-Junquera, M.B. Gonzalez-Garcia, J.V. Perales-Rondon, A. Heras, A. Colina, D. Hernandez-Santos, P. Fanjul-Bolado (2018). Quantitative Raman spectroelectrochemistry using silver screen-printed electrodesElectrochim. Acta, 264, 183-190.
 
[11]  B. Schrader (1989). Raman/Infrared Atlas of Organic Compound, VCH (2, Ed.), Weinheim.
 
[12]  J.B. Lambert, S. Gronert, H.F. Shurvell, D.A. Lightner (2012), Spectroscopy. Structure elucidation in organic chemistry, Pearson, Munich.
 
[13]  C.W. Gullikson, J.R. Nielsen (1957). Vibrational spectra of gaseous vinyl chloride and vinyl bromide, J. Mol. Spectrosc. 1, 158–178.
 
[14]  D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli (1991). The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, Boston, p. 286.