[1] | K. Hiramoto, E. Villani, E., T. Iwama, T., K. Komatsu, S. Inagi, K.Y. Inoue, Y. Nashimoto, K. Ino, H. Shiku, Recent Advances in Electrochemiluminescence-Based Systems for Mammalian Cell Analysis. Micromachines, 2020, 11, 530. |
|
[2] | M. Tausch, Chemie mit Licht, Innovative Didaktik für Studium und Unterricht, Springer, Berlin, 2019, p121-122. |
|
[3] | A. Roda, M. Guardigli, E. Michelini, Nanobioanalytical luminescence: Förster-type energy transfer methods, Anal. Bioanal. Chem. 2009, 393,109. |
|
[4] | D. Ibanez, M.B. Gonzalez-Garcia, D. Hernandez-Santos, P. Fanjul-Bolado, Understanding the ECL interaction of luminol and [Ru(bpy)3]2+ luminophores by spectroelectrochemiluminescence, Phys. Chem. Chem. Phys. 2020, 22, 18261. |
|
[5] | W. Miao, J.P. Choi, A.J. Bard, ElectrogeneratedChemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A NewRoute Involving TPrA •+ Cation Radicals, J. Am. Chem. Soc. 2002, 124, 14478. |
|
[6] | A. Kapturkiewicz, Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett. 1995, 236, 389. |
|
[7] | D. M. Hercules, F. E. Lytle, Chemiluminescence from reduction reactions, J. Am. Chem. Soc. 1966, 88, 4795. |
|
[8] | M. M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 2004, 104, 3003. |
|