World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: https://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2023, 11(3), 87-91
DOI: 10.12691/wjce-11-3-11
Open AccessSpecial Issue

Spectral Interaction between ECL of Luminol and Different Luminophores - New Spectroelectrochemical Experiments for Students

A. Habekost1,

1University of Education Ludwigsburg, Ludwigsburg, Germany

Pub. Date: August 28, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper:
A. Habekost. Spectral Interaction between ECL of Luminol and Different Luminophores - New Spectroelectrochemical Experiments for Students. World Journal of Chemical Education. 2023; 11(3):87-91. doi: 10.12691/wjce-11-3-11

Abstract

The resonant energy transfer from luminol / H2O2 to various luminophores is described in detail. The emission of light is triggered by the electrogenerated chemiluminescence of luminol. Luminophores can absorb the light and fluoresce. By using a mixture of different dyes, a wide range of emissions can be produced. The luminophore [Ru(bpy)3]2+ / tripropylamine can react in two ways: Either it can fluoresce by resonance energy transfer from the luminol, or it can emit by ECL itself.

Keywords:
Electrogenerated chemiluminescence fluorovoltammetry resonant energy transfer

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  K. Hiramoto, E. Villani, E., T. Iwama, T., K. Komatsu, S. Inagi, K.Y. Inoue, Y. Nashimoto, K. Ino, H. Shiku, Recent Advances in Electrochemiluminescence-Based Systems for Mammalian Cell Analysis. Micromachines, 2020, 11, 530.
 
[2]  M. Tausch, Chemie mit Licht, Innovative Didaktik für Studium und Unterricht, Springer, Berlin, 2019, p121-122.
 
[3]  A. Roda, M. Guardigli, E. Michelini, Nanobioanalytical luminescence: Förster-type energy transfer methods, Anal. Bioanal. Chem. 2009, 393,109.
 
[4]  D. Ibanez, M.B. Gonzalez-Garcia, D. Hernandez-Santos, P. Fanjul-Bolado, Understanding the ECL interaction of luminol and [Ru(bpy)3]2+ luminophores by spectroelectrochemiluminescence, Phys. Chem. Chem. Phys. 2020, 22, 18261.
 
[5]  W. Miao, J.P. Choi, A.J. Bard, ElectrogeneratedChemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)32+)/Tri-n-propylamine (TPrA) System Revisited - A NewRoute Involving TPrA •+ Cation Radicals, J. Am. Chem. Soc. 2002, 124, 14478.
 
[6]  A. Kapturkiewicz, Electrogenerated chemiluminescence from the tris(2,2'-bipyridine)ruthenium(II) complex, Chem. Phys. Lett. 1995, 236, 389.
 
[7]  D. M. Hercules, F. E. Lytle, Chemiluminescence from reduction reactions, J. Am. Chem. Soc. 1966, 88, 4795.
 
[8]  M. M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 2004, 104, 3003.