World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: https://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2023, 11(3), 80-86
DOI: 10.12691/wjce-11-3-10
Open AccessSpecial Issue

Education for Sustainable Development and Experiments involving Titanium Dioxide

Julian Venzlaff1, Kaltrina Kosumi1 and Diana Zeller, Claudia Bohrmann-Linde1,

1Department of Chemistry Education, University of Wuppertal, Wuppertal, Germany

Pub. Date: August 28, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper:
Julian Venzlaff, Kaltrina Kosumi and Diana Zeller, Claudia Bohrmann-Linde. Education for Sustainable Development and Experiments involving Titanium Dioxide. World Journal of Chemical Education. 2023; 11(3):80-86. doi: 10.12691/wjce-11-3-10

Abstract

The semiconductor titanium dioxide is used in a wide field of applications. The application as food additive has been under debate as it might be potentially cancerogenic. Therefore, experiments should be modified in order to prevent students from having direct contact with the substance. Three experiments relating to different fields of application are proposed in this paper. Accompanying teaching materials have the sustainable development goal 13 “climate action” as a leitmotif. The debate about titanium dioxide is a good didactic anchor to promote education for sustainable development (ESD) in school education in a multi-perspective approach.

Keywords:
sustainability ESD SDG13 climate action titanium dioxide photoprocesses photoreforming photocatalysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Smestad, G.P., Grätzel M., “Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter” J. Chem. Educ., 75 (69), 752-756, June 1998.
 
[2]  Bohrmann-Linde, C., Tausch, M.W., “Photogalvanic Cells for Classroom Investigations: A Contribution for Ongoing Curriculum Modernization”, J. Chem. Educ., 80 (12), 1471-1473, December 2003.
 
[3]  Bohrmann-Linde, C., Meuter, N., Zeller, D., Tausch, M.W. “Teaching Photochemistry: Experimental Approaches and Digital Media“, ChemPhotoChem, 6 (6), 1-11, June 2022.
 
[4]  Behle, J., Lühken, A., “Wandfarbe gegen dicke Luft!? Schulexperimentelle Untersuchungen zur Photokatalyse an Titandioxid“. Naturwissenschaften im Unterricht Chemie, 26 (150), 27–31, 2015.
 
[5]  Artelt, K., Kutteroff, F., Wilke, T., Waitz, T., Habekost, A., “Von der Bisphenol A-Problematik zur Photokatalyse. Ein Vorschlag zur Einführung photokatalytischer Reaktionen an Titandioxid im Chemieunterricht.“ Praxis der Naturwissenschaften - Chemie in der Schule, 64 (1), 25–28, 2015.
 
[6]  Bohrmann-Linde, C., Zeller, D., “Chemiedidaktik - Sommer, Sonne, Titandioxid“, Nachr. Chem., 67 (7-8), 16–19, 2019.
 
[7]  https://curia.europa.eu/jcms/upload/docs/application/pdf/2022-11/cp220190de.pdf (accessed: 1.6.2023)
 
[8]  https://sdg-indikatoren.de/en/4/ (accessed: 1.6.2023)
 
[9]  Schreiber, J.R., Siege, H. (eds.), “Curriculum Framework Education for Sustainable Development.” Berlin, Cornelsen 2016
 
[10]  Tausch, M.W., “Photokatalyse - reif für den Schulunterricht“, Praxis der Naturwissenschaften - Chemie in der Schule, 60 (1), 29-32, 2011.
 
[11]  Lanfermann, P., Weidmann, C., Dege, J., Celik, S., Maaß, M. C., Waitz, T., “Experimental Approach for Efficiency Determination of Photocatalytic Hydrogen Evolution”. W. J. Chem. Educ. 9 (4),185-189, 2021.
 
[12]  Venzlaff, J., Bohrmann-Linde, C., “Photoreforming of Biomass - Producing Hydrogen from Sugar.” W. J. Chem. Educ. 9 (4), 130-135, 2021.
 
[13]  Seesing, M. Tausch, M.W., “Redoxreaktionen an Nano-Titandioxid“, Praxis der Naturwissenschaften - Chemie in der Schule, 54 (3), 16-19, 2005.
 
[14]  Peng, T., de Zhao, Dai, K., Shi, W., Hirao, K., “Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity”, J. Phys. Chem. B , 109 (11), 4947–4952, 2005.
 
[15]  Hassan, M. M., Dylla, H., Mohammad, L. N., Rupnow, T., “Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement”, Construction and Building Materials, 24(8), 1456–1461, 2010.
 
[16]  Toma, F. L., Bertrand, G., Klein, D., Coddet, C., “Photocatalytic removal of nitrogen oxides via titanium dioxide” Environ Chem Lett, 2(3), 117–121, 2004.
 
[17]  Laufs, S., Burgeth, G., Duttlinger, W., Kurtenbach, R., Maban, M., Thomas, C., Wiesen, P., Kleffmann, J., “Conversion of nitrogen oxides on commercial photocatalytic dispersion paints”, Atmospheric Environment 44(19), 2341–2349, 2010.
 
[18]  Erme, K., Raud, J., Jõgi, I., “Adsorption of Nitrogen Oxides on TiO2 Surface as a Function of NO2 and N2O5 Fraction in the Gas Phase”, Langmuir, 34(22), 6338–6345, 2018.
 
[19]  Christoforidis, K., Fornasiero, P., “Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply,” ChemCatChem, 9 (9), 1523-1544, May 2017.
 
[20]  Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 238, 37-38, July 1972.
 
[21]  Yao, Y., Gao, X., Li, Z., Meng, X., “Photocatalytic Reforming for Hydrogen Evolution: A Review”, Catalysts, 10 (3), 335, February 2020.
 
[22]  Beasley, C., Gnanamani, M. K., Qian, D., Hopps, S. D., “Photocatalytic Reforming of Sucrose and Dextrose for Hydrogen Production on Pd/TiO2”, ChemistrySelect, 6 (25), 6512-6524, July 2021.
 
[23]  Kurenkova, A. Y., Medvedeva, T. B., Gromov, N., Bukhtiyarov, A. V., Gerasimov, E., Cherepanova, S., Kozlova, E. (2021). “Sustainable Hydrogen Production from Starch Aqueous Suspensions over a Cd0.7Zn0.3S-Based Photocatalyst”, Catalysts, 11, 870, 2021.
 
[24]  Speltini, A., Sturini, M., Dondi, D., Annovazzi, E., Marasci, F., Caratto, V., Profumo, A., Buttafava, A., “Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study”, Photochemical & Photobiological Sciences, 13 (10), 1410-1419, 2014.
 
[25]  Pichler, C. M., Uekert, T., Reisner, E., “Photoreforming of biomass in metal salt hydrate solutions”, Chem. Commun., 56, 5743-5746, April 2020.
 
[26]  Rossetti, I., “Hydrogen Production by Photoreforming of Renewable Substrates”, International Scholarly Research Network Chemical Engineering, 2012 (3-4), 1-21, 2012.
 
[27]  https://chemiedidaktik.uni-wuppertal.de/fileadmin/Chemie/chemiedidaktik/files/material/BNE-allgemein/PR_Versuch_und_Aufgaben._%C3%96kol._%C3%96kon._Soz._Version_Feb._23.pdf; resource in German. (assessed 1.6.2023)
 
[28]  Venzlaff, J., Bohrmann-Linde, C., “Photoreformierung – grüner Wasserstof aus Alkohol, Zucker und Stärke“, ChemKon, (accepted for publication).
 
[29]  https://chemiedidaktik.uni-wuppertal.de/de/unterrichtsmaterialien/bildung-fuer-nachhaltige-entwicklung/ (assessed 1.6.2023).