World Journal of Chemical Education
ISSN (Print): 2375-1665 ISSN (Online): 2375-1657 Website: https://www.sciepub.com/journal/wjce Editor-in-chief: Prof. V. Jagannadham
Open Access
Journal Browser
Go
World Journal of Chemical Education. 2023, 11(3), 54-59
DOI: 10.12691/wjce-11-3-6
Open AccessSpecial Issue

From Titanium Foil to Gas Sensor: Nanoporous Anodic Titania as a Functional Material

Edwin Bogdan1, Christoph Weidmann1 and Thomas Waitz1,

1Department of Chemistry Education, Georg-August-University, Göttingen, Germany

Pub. Date: August 22, 2023
(This article belongs to the Special Issue Innovative experiments in chemistry didactics in Germany)

Cite this paper:
Edwin Bogdan, Christoph Weidmann and Thomas Waitz. From Titanium Foil to Gas Sensor: Nanoporous Anodic Titania as a Functional Material. World Journal of Chemical Education. 2023; 11(3):54-59. doi: 10.12691/wjce-11-3-6

Abstract

We present a gas sensor using nanoporous titanium dioxide which is fabricated by anodic oxidation of a titanium foil. The process is easy to handle, can be carried out at low cost and the sensor response to reducing gases can be measured using a cheap digital multimeter. In contrast to the most gas sensors, no commercially available sensor substrate is required. The band model for semiconductors and a model of ionosorption provides an explanation for the working principle of the gas sensor on particle level. Several experimental approaches for upper-secondary chemistry class are presented.

Keywords:
gas sensor titanium dioxide band model

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Seiyama, T.; Kato, A.; Fujiishi, K. and Nagatani, M., "A New Detector for Gaseous Components Using Semiconductive Thin Films," Analytical Chemistry, 34(11),1502–1503, August 1962. [Online].
 
[2]  Ramanavicius, S.; Jagminas, A. and Ramanavicius, A., "Gas Sensors Based on Titanium Oxides (Review)," Coatings, 12(5),699, May 2019. [Online].
 
[3]  Malallah Rzaij, J. and Mohsen Abass, A., "Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor," Journal of Chemical Reviews, 2(2),114–121, February 2020. [Online].
 
[4]  Elger, A.-K. and Hess, C., "Elucidating the Mechanism of Working SnO2 Gas Sensors Using Combined Operando UV/Vis, Raman, and IR Spectroscopy," Angewandte Chemie International Edition, 58(42),15057–15061, September 2019 [Online].
 
[5]  Wang, Y.; Zhou, Y.; Meng, C.; Gao, Z.; Cao, X.; Li, X.; Xu, L.; Zhu, W.; Peng, X.; Zhang, B.; Lin, Y. and Liu, L., "A high-response ethanol gas sensor based on one-dimensional TiO2/V2O5 branched nanoheterostructures," Nanotechnology, 27(42),425503, September 2016. [Online].
 
[6]  Wang, Y.; Liu, L.; Meng, C.; Zhou, Y.; Gao, Z.; Li, X.; Cao, X.; Xu, L. and Zhu, W., "A novel ethanol gas sensor based on TiO2/Ag0.35V2O5 branched nanoheterostructures," Scientific Reports, 6(1), 33092, September 2016. [Online].
 
[7]  Zhang, K.; Zhang, W.; Shen, Y. and Li, Y., "Low-cost preparation of ultra-high sensitivity Ce doped SnO2 ethanol gas sensor," Materials Letters, 335, 133839, March 2023. [Online].
 
[8]  Liu, H.; Zhu, D.; Liu, W.; Miao, T.; Chen, J.; Cheng, B.; Qin, H. and Hu, J., "Study on Gas Sensing Characteristics of LaFeO3 Sensor Under Multi-Wavelength Light Illumination," SSRN Electronic Journal, February 2023. [Online].
 
[9]  Gakhar, T. and Hazra, A., “Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds.,” Nanoscale 12(16), 9082, March 2020. [Online].
 
[10]  Bretschneider, U. and Harreis, H., "Abgasemissionen von Kraftfahrzeugen mit einem Gassensor - qualitative Untersuchungen [Exhaust gas emissions of motor vehicles with a gas sensor – qualitative investigations]," Praxis der Naturwissenschaften –Physik in der Schule, 38 (3), 32–39, April 1989.
 
[11]  Zeiter, W., "Sauerstoffproduktion von Pflanzen. Elektronischer Gassensor zur Messung [Oxygen production by plants. Electronic gas sensor for measurement]," Praxis der Naturwissenschaften – Biologie in der Schule, 42 (3), 22–24, April 1993.
 
[12]  Waitz, T. and Tiemann, M., "'Ich rieche was, was du nicht riechst': Halbleitende Metalloxide als Gassensoren im Chemieunterricht [‚I smell something you cannot smell‘: Semiconductive metal oxide as gas sensors for chemistry class]," Chemkon, 16(4),183–186. January 2009. [Online].
 
[13]  Wielage, B.; Alisch, G.; Lampke, T. and Nickel, D., "Anodizing – A Key for Surface Treatment of Aluminium," Key Engineering Materials, 384, 263–281, June 2008. [Online].
 
[14]  İzmir, M. and Ercan, B., "Anodization of titanium alloys for orthopedic applications," Frontiers of Chemical Science and Engineering, 13(1), 28–45, November 2018. [Online].
 
[15]  Lanfermann, P.; Weidmann, C.; Waitz, S.; Maaß, M.C. and Waitz, T., "Preparation of nano titanium dioxide coatings by anodic oxidation: beautifully colorful and functional," Chemkon, 29(8), 225–233. September 2022. [Online].
 
[16]  Hazra, A.; Dutta, K.; Bhowmik, B.; Chattopadhyay, P.P. and Bhattacharyya, P., "Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array," Applied Physics Letters, 105(8), 81604, August 2014. [Online].
 
[17]  Berger, S., Selbstorganisierte nanostrukturierte anodische Oxidschichten auf Titan und TiAl-Legierungen: Morphologie, Wachstum und Dünnschichtanodisation [Self-assembled nanostructured anodic oxide films on titanium and TiAl alloys: Morphology, growth and thin film anodization], dissertation, Erlangen, 2009.
 
[18]  Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S. and Schmuki, P., "TiO2 nanotubes: Self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, 11(1-2),3–18. [Online].
 
[19]  Yamazoe, N. and Shimanoe, K., "Receptor Function and Response of Semiconductor Gas Sensor," Journal of Sensors, 2009, 1–21, July 2009. [Online].
 
[20]  Oh, H.-J.; Kim, I.-K.; Jang, K.-W.; Lee, J.-H.; Lee, S. and Chi, C.-S., “Influence of electrolyte and anodic potentials on morphology of titania nanotubes,” Metals and Materials International, 18 (4), 673–677. February 2012 [Online].
 
[21]  Xiong, L.-B.; Li, J.-L.; Yang, B. and Yu, Y., "Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application," Journal of Nanomaterials, 2012, 1–13, November 2011. [Online].
 
[22]  Chen, Y.; Li, M.; Yan, W.; Zhuang, X.; Ng, K.W. and Cheng, X., "Sensitive and Low-Power Metal Oxide Gas Sensors with a Low-Cost Microelectromechanical Heater," ACS Omega, 6(2), 1216–1222, January 2021. [Online].