[1] | L. Mamy, E. Barriuso, G. Benoit, Glyphosate fate in soils when arriving in plant residues, Chemosphere 154 (2016) 425-433. |
|
[2] | V.C. Aparicio, E. De Geronimo, D. Marino, J. Primost, P. Carriquiriborde, J.L. Costa, Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins, Chemosphere 93 (2013) 1866-1873. |
|
[3] | P. Sprankle, W.F. Meggitt, D. Penner, Adsorption, mobility, and microbial degradation of glyphosate in the soil, Weed Sci. 23 (1975) 229-234. |
|
[4] | S. Chen, Y. Liu, Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst, Chemosphere 67 (2007) 1010-1017. |
|
[5] | C. Lesueur, M. Pfeffer, M. Fuerhacker, Photodegradation of phosphonates in water, Chemosphere 59 (2005) 685-691. |
|
[6] | H. Roseboom, C.J. Berkhoff, Determination of the herbicide glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after fluorescence labeling, Anal. Chim. Acta 135 (1982) 373-737. |
|
[7] | H.A. Powell, N.W. Kerby, P. Rowell, High-performance liquid chromatographic determination of the herbicide glyphosate and its metabolite (aminomethyl) phosphonic acid and their extraction from cyanobacteria, J. Chromatogr. 502 (1990) 201-207. |
|
[8] | M.T.H. Ragab, Thin-layer chromatographic detection of glyphosate herbicide (N- phosphonomethyl glycine) and its aminomethyl phosphonic acid metabolite, Chemosphere 7 (1978) 143-153. |
|
[9] | S. Pintado, R.R. Amaro, M. Mayen, J.M.R. Mellado, Electrochemical determination of the glyphosate metabolite aminomethylphosphonic acid (GUFOSINATE) in drinking water with an electrodeposited copper electrode, Int. J. Electrochem. Sci. 7 (2012) 305-312. |
|
[10] | https://de.wikipedia.org/wiki/Roundup. |
|
[11] | H-Y Chuang, T-P Hong, C-W Whang, A simple and rapid screening method for glyphosate in water using flow-injection with electrochemiluminescence detection, Anal. Methods 5 (2013) 6186-6191. |
|
[12] | https://www.dw.com/de/bundesregierung-billigt-insektenschutz-gesetz-und-glyphosat-verbot/a-56525242. |
|
[13] | U. Merkel, G.-W. Rathke, C. Schuster, K. Warnstorff, W. Diepenbrock Use of glufosinate-ammonium to control cruciferous weedspecies in glufosinate-resistant winter oilseed rape, Field Crops Research 85 (2004) 237-249. |
|
[14] | E. Börjesson, L. Torstensson, New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil, J. Chromatogr. 886 (2000) 207-216. |
|
[15] | C.L. Deyrup, S.M. Chang, R.A. Weitraub, H.A. Moye, Simultaneous esterification and acylation of pesticides for analysis by gas chromatography. 1. Derivatization of glyphosate and (aminomethly)phosphonic acid with fluorinated alcohols per- fluorinated anhydrides, J. Agric. Food Chem. 33 (1985) 944-947. |
|
[16] | A. Habekost, Spectroscopic and Electrochemical Investigations of N-(Phosphonomethyl)glycine and (Aminomethyl)phosphonic Acid (AMPA), World J. Chem. Educ. 3 (2015) 134-140. |
|
[17] | S. de Miranda Colombo, J.C. Masini, Developing a fluorimetric sequential injection methodology to study adsorption/desorption of glyphosate on soil and sediment samples, Microchem. Acta 98 (2011) 260-266. |
|
[18] | S. Kodama, Y. Ito, A. Taga, Y. Nomura, A. Yamamoto, S. Chinaka, K. Suzuki, T. Yamashita, T. Kemmei, K. Hayakawa, A fast and simple analysis of glyphosate in tea beverage by capillary electrophoresis with on-line copper (II)-glyphosate complex formation, J. Health Sci. 54 (2008) 602-606. |
|
[19] | P.G. Daniele, C. De Stefano, E. Prenesti, S. Sammartano, Copper (II) complexes of N-(phosphonomethyl)glycine in aqueous solution: a thermodynamic and spectro- photometric study, Talanta 45 (1997) 425-431. |
|
[20] | E. Sierra, M.A. Mendez, V.M. Sarria, M.T. Cortes, Electrooxidatión de glifosatoso-breelectrodos de níquel y cobre, Quim. Nova 31 (2008) 220-226. |
|
[21] | S. Bozorgzadeh, B. Haghighi, Enhanced electrochemiluminescence of ZnO nano- particles decorated on multiwalled carbon nanotubes in the presence of perox- ydisulfate, Microchim. Acta 183 (2016) 1487-1492. |
|
[22] | S. Bozorgzadeh, B. Haghighi, L. Gorton, Fabrication of a highly efficient solid state electrochemiluminescence sensor using Ru(bpy) 2+ incorporated nanoZnO- MWCNTs-Nafion composite film, Electrochim. Acta 164 (2015) 211-217. |
|
[23] | A.L. Valle, F.C.C. Mello, R.P. Alves-Balvedi, L. P. Rodrigues, L. R. Goulart, Glyphosate detection: methods, needs and challenges, Environmental Chemistry Letters 17 (2019) 291-317. |
|
[24] | A.J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, Marcel Dekker, New York, 2000. |
|
[25] | A.A. Shaikh, J. Fitdaws, S. Badrunnessa, S. Serajee, M.S. Rahmen, P.K. Bakshi, Electrochemical Studies of the pH Dependence of Cu(II) Reduction in Aqueous Britton-Robinson Buffer Solution, Int. J. Electrochem. Sci. 6 (2011), 2333-2343. |
|
[26] | C.F.B. Coutinho, M.O. Silva, S.A.S. Machado, L.H. Mazo, Influence of glyphosate on the copper dissolution in phosphate buffer, Applied Surface Science 253 (2007) 3270-3275. |
|
[27] | M.M. Richter, Electrochemiluminescence (ECL), Chem. Rev. 104 (2004) 3003-3036. |
|
[28] | S. Parveen, M.S. Aslam, L. Hu, G. Xu, Electrogenerated Chemiluminescence. Protocols and Applications, Springer, Heidelberg, Germany, 2013. |
|
[29] | A. Habekost, Investigations of some reliable electrochemiluminescence systems on the basis of tris(bipyridyl)ruthenium(II) for HPLC analysis, World J. Chem. Educ. 4 (2016) 13-20. |
|
[30] | W. Miao, J.P. Choi, A.J. Bard, Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), [Ru(bpy) 2+]/Tri-n-propylamine (TPrA) system revisited - a new route involving TPrA•+ cation radicals, J. Am. Chem. Soc. 124 (2002) 14478-14485. |
|
[31] | R.M. Wightman, S.P. Forry, R. Maus, D. Badocco, P. Pastore, Rate-determining step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2′- bipyridine)ruthenium(II), J. Phys. Chem. B 108 (2004) 19119-19125. |
|
[32] | W. Jackson, D.R. Bobbitt, Chemiluminescence detection of amino acids using in situ generation Ru(bpy) 3+, Anal. Chim. Acta 285 (1994) 309-320. |
|
[33] | S.N. Brune, D.R. Bobbitt, Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2′-bipyridine) ruthenium(II) with amino acids, Anal. Chem. 64 (1992) 166-170. |
|
[34] | D.R. Skotty, W.Y. Lee, T.A. Nieman, Determination of dansyl amino acids and oxalate by HPLC with electrogenerated chemiluminescence detection using tris(2,2’-bipyridyl)ruthenium (II) in the mobile phase, Anal. Chem. 68 (1996) 1530-1535. |
|
[35] | W.Y. Lee, T.A. Nieman, Determination of dansyl amino acids using tris(2,2′- bipyridyl)ruthenium (II) chemiluminescence for post column reaction detection in high-performance liquid chromatography, J. Chromatogr. A 659 (1994) 111-118. |
|
[36] | J.A. Holeman, N.D. Danielson, Chemiluminescence reaction of thiazide compounds with tris(2,2′-bipyridine)ruthenium(III), Anal. Chim. Acta 277 (1993) 55-60. |
|
[37] | J.A. Holeman, N.D. Danielson, Liquid chromatography of antihistamines using post-column tris(2,2′-bipyridine) ruthenium(III) chemiluminescence detection, J. Chromatogr. A 679 (1994) 277-284. |
|
[38] | G.M. Greenway, A.W. Knight, P.J. Knight, Electrogenerated chemiluminescent determination of codeine and related alkaloids and pharmaceuticals with tris(2,2′- bipyridine)ruthenium(II), Analyst 120 (1995) 2549-2552. |
|
[39] | G.M. Greenway, P.J. Knight, Determination of oxprenolol by electrogenerated chemiluminescence, Anal. Proc. 32 (1995) 251-253. |
|
[40] | R.D. Gerardi, N.W. Barnett, S.W. Lewis, Analytical applications of tris(2,2′-bipyridyl)ruthenium(III) as a chemiluminescent reagent, Anal. Chim. Acta 378 (1999) 1-43. |
|
[41] | K.A. Fähnrich, M. Pravda, G.G. Guilbault, Recent applications of electrogenerated chemiluminescence in chemical analysis, Talanta 54 (2001) 531-559. |
|
[42] | J.S. Ridlen, G.J. Klopf, T.A. Nieman, Determination of glyphosate and related compounds using HPLC with tris(2,2′-bipyridine)ruthenium(II) electrogenerated chemiluminescence detection, Anal. Chim. Acta 341 (1997) 195-204. |
|
[43] | J.L. Adock, N.W. Barnett, R.D. Gerardi, C.E. Lenehan, S.W. Lewis, Determination of glyphosate mono-isopropylamine salt in process samples using flow injection analysis with tris(2,2′-bipyridine)ruthenium(II) chemiluminescence detection, Talanta 64 (2004) 534-537. |
|
[44] | A. Habekost, Fundamentals and Applications of Electrochemical Impedance Spectroscopy - A Didactic Perspective, World J. Chem. Educ. 9 (2021), 14-21. |
|
[45] | A. Habekost, Spectroscopic and Electrochemical Investigations of N-(Phosphonomethyl)glycine (glyphosate) and (Aminomethyl)phosphonic Acid (AMPA), World J. Chem. Educ. 3 (2015) 134-140. |
|
[46] | M.R. Jan, J. Shah, M. Muhammad, B. Ara, Glyphosate herbicide residue determination in samples of environmental importance using spectrophotometric method. J. Hazard Mater. 169 (2009) 742-745. |
|
[47] | S.Y. Chang, C-H. Liao, Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection, Journal of Chromatography A, 959 (2002) 2309-315. |
|
[48] | L. Besagarahally, L. Bhaskare, P. Nagaraja, Direct sensitive Spectrophotometric Determination of Glyphosate by Using Ninhydrin as a Chromogenic Reagent in Formulations and Environmental water Samples, Helvetica Chemica Acta, 89 (2006) 2686-2693. |
|
[49] | T. Undabeytia, E. Morillo, C. Maqueda, FTIR Study of Glyphosate-Copper Complexes, J. Agricult. Food Chem., 50 (2002), 1918-1921. |
|
[50] | J. Sheals, P. Persoon, B. Hedman, IR and EXAFS spectroscopic studies of glyphosate protonantion and copper (II) complexes of glyphosate an aqueous solution, Inorg. Chem, 40 (2001) 4302-4309. |
|
[51] | J. Sheals, M. Granström, S. Sjöberg, P. Persson, Coadsorption of Cu(II) and glyphosate at the water-goethite (α-FEOOH) interface: molecular structures from FTIR and EXAFS measurements, J. Colloid and Interface Science 262 (2003) 38-47. |
|