[1] | Levi, P.G., Cullen, J.M.: Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environ. Sci. Technol. 52, 1725-1734 (2018). |
|
[2] | Sining Yun, Nick Vlachopoulos, Ahsanulhaq Qurashi, Shahzada Ahmad, Anders Hagfeldt “Dye sensitized photoelectrolysis cells” Chem. Soc. Rev., 48 (2019) 3705-3722. |
|
[3] | Graves, C., Ebbesen, S.D., Mogensen, M., Lackner, K.S.: Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renew. Sustain. Energy Rev. 15, 1-23 (2011). |
|
[4] | Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., Chen, X.: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A. 3, 2485-2534 (2015). |
|
[5] | Fujishima, A., Honda, K.: Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 238, 37-38 (1972). |
|
[6] | Jafari, T., Moharreri, E., Amin, A., Miao, R., Song, W., Suib, S.: Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances. Molecules. 21, 900 (2016). |
|
[7] | Serpone, N., Emeline, A. V, Horikoshi, S.: Photocatalysis and solar energy conversion (chemical aspects). Photochem. Vol. 37. (2009). |
|
[8] | Cao, S., Yu, J.: Carbon-based H2-production photocatalytic materials. J. Photochem. Photobiol. C Photochem. Rev. 27, 72-99 (2016). |
|
[9] | Morosini, V., Chave, T., Virot, M., Moisy, P., Nikitenko, S.I.: Sonochemical water splitting in the presence of powdered metal oxides. Ultrason. Sonochem. 29, 512-516. (2016). |
|
[10] | Hung, W., Chien, T., Tseng, C.: Enhanced Photocatalytic Water Splitting by Plasmonic TiO 2 –Fe 2 O 3 Cocatalyst under Visible Light Irradiation. J. Phys. Chem. C. 118, 12676-12681 (2014). |
|
[11] | Jiang, N., Tang, Q., Sheng, M., You, B., Jiang, D., & Sun, Y. (2015). Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles Catalysis Science & Technology, 6(4), 1077-1084. |
|
[12] | Wei, L., Chen, Y., Zhao, J., & Li, Z. (2013). Preparation of NiS/ZnIn2S4as a superior photocatalyst for hydrogen evolution under visible light irradiation. Beilstein Journal of Nanotechnology, 4, 949-955. |
|
[13] | Li, C., Wang, H., Naghadeh, S. B., Zhang, J. Z., & Fang, P. (2018). Visible light driven hydrogen evolution by photocatalytic reforming of lignin and lactic acid using one-dimensional NiS/CdS nanostructures. Applied Catalysis B: Environmental, 227, 229-239. |
|
[14] | Li, N., Zhou, B., Guo, P., Zhou, J., & Jing, D. (2013). Fabrication of noble-metal-free Cd0.5Zn0.5S/NiS hybrid photocatalyst for efficient solar hydrogen evolution. International Journal of Hydrogen Energy, 38(26), 11268-11277. |
|
[15] | Liu, Q., He, J., Yao, T., Sun, Z., Cheng, W., He, S., Xie, Y., Peng, Y., Cheng, H., Sun, Y., Jiang, Y., Hu, F., Xie, Z., Yan, W., Pan, Z., Wu, Z., Wei, S.: Aligned Fe2TiO5-containing nanotube arrays with low onset potential for visible-light water oxidation. Nat. Commun. 5, 5122 (2014). |
|
[16] | Sivula, K., Zboril, R., Le Formal, F., Robert, R., Weidenkaff, A., Tucek, J., Frydrych, J., Grätzel, M.: Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 132, 7436-7444 (2010). |
|
[17] | Sivula, K., Le Formal, F., Grätzel, M., Le Formal, F., Grätzel, M.: Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem. 4, 432-449 (2011). |
|
[18] | Chen, S., Zeng, Q., Bai, J., Li, J., Li, L., Xia, L., Zhou, B.: Preparation of hematite with an ultrathin iron titanate layer via an in situ reaction and its stable, long-lived, and excellent photoelectrochemical performance. Appl. Catal. B Environ. 218, 690-699 (2017). |
|
[19] | Kim, T.W., Choi, K.-S.: Improving Stability and Photoelectrochemical Performance of BiVO 4 Photoanodes in Basic Media by Adding a ZnFe 2 O 4 Layer. J. Phys. Chem. Lett. 7, 447-451 (2016). |
|
[20] | Annamalai, A., Shinde, P.S., Jeon, T.H., Lee, H.H., Kim, H.G., Choi, W., Jang, J.S.: No Title. Sol. Energy Mater. Sol. Cells. 144, 247-255 (2016). |
|
[21] | Lin, L., Ou, H., Zhang, Y., Wang, X.: Tri- s -triazine-Based Crystalline Graphitic Carbon Nitrides for Highly Efficient Hydrogen Evolution Photocatalysis. ACS Catal. 6, 3921-16. |
|
[22] | Ahsanulhaq et al. Template-less surfactant-free hydrothermal synthesis NiO nanoflowers and their photoelectrochemical hydrogen production. International Journal of Hydrogen Energy, 40, 45, (2015) 15801-15805. |
|