[1] | Heineman, W. R. Spectroelectrochemistry. J. Chem. Educ. 1983, 60, (4). 305-308. |
|
[2] | Monk, P. M. S, The Viologens, Wiley, Chichester, 1998. |
|
[3] | Monk, P. M. S.; Mortimer, R. J.; Rosseinsky, D. R. Electrochromism and Electrochromic Devices, Cambridge University Press, Cambridge, 2007. |
|
[4] | Granquist, C. G.; Pehlivan, I. B.; Green, S. V.; Lansaker, P. C.; Niklasson, G. A, Oxide-based Electrochromism: Advances in materials and devices, Mater. Res. Soc. Symp. Proc. 2011, 1328, 11-22. |
|
[5] | Pang, Y.; Chen, Q.; Shen, X.; Tang, L.; Qian, H, Size-controlled Ag nanoparticle modified WO3 composite films for adjustment of electrochromic properties, Thin Solid Films, 2010, 518, 1920-1924. |
|
[6] | Galiote, N. A.; Parreira, R. L. T.; Rosolen, J. M.; Huguenin, F.Self-assembled films from WO3: Electrochromism and lithium ion diffusion, Electrochem. Commun., 2010, 12, 733-736. |
|
[7] | Hepel, M. Electrochromic WO3 Films: Nanotechnology Experiments in Instrumental Analysis and Physical Chemistry Laboratories, J. Chem. Educ., 2008, 85, 125-127. |
|
[8] | Duek, E. A. R.; De Paoli, M. A. Mastragostino, M, An electrochromic device based on polyaniline and Prussian blue, Adv. Mater., 1992,4, 287-291. |
|
[9] | Jelle, B. P.; Hagen, G.Transmission spectra of an electrochromic window based on polyaniline, Prussian blue and tungsten oxide, J. Electrochem. Soc., 1993, 140, 3560-3564. |
|
[10] | Barbero, C.; Miras, M. C.; Koetz, R.; Haas, O.Comparative study of the ion exchange and electrochemical properties of sulfonated polyaniline (SPAN) and polyaniline (PANI), Synth. Met., 1993, 55, 1539-1544. |
|
[11] | Ram, M. K.; Maccioni, E.; Nicolini, C.The electrochromic response of polyaniline and its copolymeric systems, Thin Solid Films, 1997, 303, 27-33. |
|
[12] | Beden, B.; Enea, O.; Hahn, F.; Lamy, C. Investigations of the absorption of Methyl Viologen on a platinum electrode by voltammetry coupled with “in situ” UV-visible reflectance spectroscopy, J. Electroanal. Chem., 1984, 170, 357-361. |
|
[13] | Bird, C. L.; Kuhn, A. T. Electrochemistry of the Viologens, Chem. Soc. Rev., 1981, 10, 49-82. |
|
[14] | Barclay, D. J.; Bird, C. L.; Martin, D. H. Speed considerations for electrochromic displays, J. Electron. Mater.1979, 8, 311-315. |
|
[15] | Ruff, A.; Speiser, B.; Dreiling, J. Redox-active silica nanoparticles. Part 7. Redox behavior of core/shell structured viologen modified silica particles immobilized at paraffin impregnated graphite electrodes, J. Electroanal. Chem., 2013, 710, 10-16. |
|
[16] | Passon, M.; Ruff, A.; Schuler, P.; Speiser B.; Dreiling, J. Redox-active Silica Nanoparticles. Part 8. Stepwise solid-phase synthesis and solid state electrochemistry of redox active viologen core/shell structured modified silica materials, Chem Electro Chem, 2014, 1, 263-280. |
|
[17] | Saricayir, H.; Uce, M.; Koca, A. In Situ Techniques for Monitoring Electrochromism, J. Chem. Educ.2010, 87, 205-207. |
|
[18] | Monk, P. M. S.; Turner, C.; Akhtar, S. P. Electrochemical behavior of methyl viologen in a matrix of paper, Electrochim. Acta, 1999, 44, 4817-4826. |
|
[19] | Rueda, M.; Compton, R. G.; Alden, J. A. Prieto, F. Impedance voltammetry of electro-dimerization mechanisms: Application to the reduction of the methyl viologen di-cation at mercury electrodes and aqueous solutions, Electroanal. Chem. 1998, 443, 227-235. |
|
[20] | Gerardi, R.D.; Barnett, N.W.; Lewis, S.W. Analytical applications of tris (2,2'-bipyridyl) ruthenium(III) as a chemiluminescent reagent. Analyt.Chim.Acta,1999, 378, 1-43. |
|
[21] | Martin-Yerga, D.; Perez-Junquera, A.; Hernandez-Santos, D.; Fanjul-Bolado, P. Electroluminescence of [Ru(bpy)3]2+ at gold and silver screen-printed electrodes followed by real-time spectroelectrochemistry, Phys. Chem. Chem. Phys. 2017, 19, 22633-22637. |
|
[22] | Costin, J. W.; Barnett, N. W.; Lewis, S. W. Determination of proline in wine using flow injection analysis with tris (2, 2’-bipyridyl) ruthenium (II) chemiluminescence detection, Talanta 2004, 64, 894-898. |
|
[23] | Habekost, A. Investigations of Some Reliable Electrochemi luminescence Systems on the Basis of tris (bipyridyl) Ruthenium (II) for HPLC Analysis. World J. Chem. Educ. 2016, 4, 13-20. |
|
[24] | Forslund, B. A. Simple Laboratory Demonstration of Electrochromism, J. Chem. Educ.,1997, 74, 962 - 963. |
|
[25] | Abdinejad, T.; Zamanloo, M.R.; Alizadeh, T.; Mahmoodi, N. O.; Pouran S. R. Photochromic and Electrochromic Diimide Synthesized Simply from Inexpensive Compounds: A Multidisciplinary Experiment for Undergraduate Students. J. Chem. Educ. 2018,95 (9), 1642-1647. |
|
[26] | Jorge G. Ibanez, J. G.; Puente-Caballero, R.; Torres-Perez, J.,; Bustos, D.; Carmona-Orbezo, A.; Sevilla, F.B. An Inexpensive Device for Studying Electrochromism. J. Chem. Educ. 2012,89 (9), 1205-1207. |
|
[27] | Schmidt, H-J.; Marohn A.; Harrison, A.G. Factors that prevent learning in Electrochemistry, J. Res. in Sci. Teaching, 2007, 44, 258-283. |
|
[28] | Garnet P.J.; Treagust, D.F. Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolysis cells, J. Res. in Sci. Teach. 1992, 29, 1079-1099. |
|
[29] | Ogude, N.A.; Bradley, J.D. Electrode processes and aspects relating to cell EMF, current, and cell components in operating electrochemical cells. J. Chem. Educ. 1996, 73, 1145-1149. |
|
[30] | Huddle, A.H.; White, M.D.; Rodgers, F. Using a teaching model to correct known misconceptions in electrochemistry. J. Chem. Educ. 2000, 77, 104-110. |
|
[31] | Acar, B.; Tarhan, L. Effect of cooperative learning strategies on students’ understanding of concepts in electrochemistry. Int. J. Sci. and Math. Educ. 2007, 5, 349-373. |
|
[32] | Bard, A. J. (Ed.) Electrogenerated Chemi luminescence. Marcel Dekker, New York, 2004. |
|
[33] | Richter, M.M. Electrochemi luminescence (ECL). Chem. Rev. 2004, 104, 3003-3036. |
|
[34] | Parveen, S.; Aslam, M.S.; Hu, L.; Xu, G. Electrogenerated Chemi luminescence. Protocols and Applications. Springer, Heidelberg, Germany, 2013. |
|
[35] | Fähnrich, K.A.; Pravda, M.; Guilbault, G.G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta2001, 54, 531-559. |
|
[36] | Aristov, N; Habekost, A. Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes. World J. Chem. Educ. 2015, 3, 5 115-119. |
|
[37] | Viswanathan, B.; Scibioh, M.A. Photoelectrochemistry. Principles and Practices, Alpha Science, Oxford, 2014. |
|
[38] | Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, Wiley and Sons, New York, 2001. |
|
[39] | Gosser, Jr, D. K. Cyclic Voltammetry. Simulation and Analysis of Reaction Mechanism, VCH, Weinheim, Germany, 1993. |
|
[40] | Compton, R. G.; Banks, C. E. Understanding Voltammetry, 2nd Edition, Imperial College Press, 2011. |
|
[41] | Mabbott, G. A. An Introduction to Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 607-702. |
|
[42] | Kissinger, P. T.; Heineman, W. R. Cyclic Voltammetry, J. Chem. Educ. 1983, 60, 702-706. |
|
[43] | van Benschoten, J. J.; Lewis, Y. T.; Heineman, W. R.; Roston, D. A.; Kissinger, P. T. Cyclic Voltammetry Experiments, J. Chem. Educ. 1983, 60, 772-776. |
|
[44] | Amend, J.R.; Steward, G.; Kunzleman, T.S.; Collins, M.J. Affordable cyclic voltammetry, J. Chem. Educ. 2009, 86 (9), 1080-1081. |
|
[45] | Taleat Z.; Khoshroo, A.; Mazloum-Ardakani M. Screen-printed electrodes for biosensing: A review (2008-2013) MicrochimicaActa,2014,181, 865-891. |
|
[46] | Alberich, A.; Serrano, N.; Diaz-Cruz, J.M.; Arino, C.; Esteban, M. Substitution of mercury electrodes by bismuth-coated screen-printed electrodes in the determination of quinone in tonic water, J. Chem. Educ. 2013, 90, 1681-1684. |
|
[47] | DeAngelis, T. P.; Heineman, W. R. An Electrochemical Experiment Using an Optically Transparent Thin Layer Electrode, J. Chem. Educ. 1976, 53, 594 - 597. |
|
[48] | Hernandez, C. N.; Martin-Yerga, D.; Gonzalez-Garcia, M. B.; Hernandez-Santos, D.; Fanjul-Bolado, P. Evaluation of electrochemical, UV/VIS and Raman spectroelectrochemical detection of Naratripan with screen-printed electrodes, Talanta2018, 178, 85-88. |
|
[49] | Hernandez, C. N.; Gonzalez-Garcia, M. B.; Hernandez-Santos, D.; Heras, M. A.; Colina, A.; Fanjul-Bolado, P. Aqueous UV-VIS spectroelectrochemical study of the voltammetric reduction of graphene oxide on screen-printed carbon electrodes, Electro. Comm. 2016,64, 85-88. |
|
[50] | Kalyanasundaram, K. Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium (II) and its analogues, Coord. Chem. Rev.1982,46, 159-244. |
|