[1] | Ministry of Health and Welfare, “2012 Korean National Health & Nutrition Examination Survey,” https://knhanes.cdc.go.kr/knhanes/index.do/ [accessed Nov. 02, 2016]. |
|
[2] | Ogden, C.L., Carroll, M.D., Kit, B.K., Flegal, K.M., “Prevalence of obesity among adults: United States, 2011-2012,” NCHS, Data Brief, 131, 2013. |
|
[3] | Yaemsiri, S., Slining, M.M., Agarwal, S.K., “Perceived weight status, overweight diagnosis, and weight control among US adults: the NHANES 2003-2008 Study,” International Journal of Obesity (Lond), 35(8), 1063-70, 2011. |
|
[4] | Tontonoz, P., Hu, E., Spiegelman, B.M., “Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor,” Cell, 79(7), 1147-56, 1994. |
|
[5] | Ranganathan, G., Unal, R., Pokrovskaya, I., Yao-Borengasser, A., Phanavanh, B., Lecka-Czernik, B., Rasouli, N., Kern, P.A., “The lipogenic enzymes DGAT1, FAS, and LPL in adipose tissue: effects of obesity, insulin resistance, and TZD treatment,” Journal of Lipid Research, 47(11), 2444-50, 2006. |
|
[6] | Chang, E., Choi, J.M., Kim, W.J., Rhee, E.J., Oh, K.W., Lee, W.Y., Park, S.E., Park, S.W., Park, C.Y., “Restoration of adiponectin expression via the ERK pathway in TNFα-treated 3T3-L1 adipocytes,” Molecular Medicine Reports, 10(2), 905-10, 2014. |
|
[7] | Abe, Y., Kawakami, A., Osaka, M., Uematsu, S., Akira, S., Shimokado, K., Sacks, F.M., Yoshida, M., “Apolipoprotein CIII induces monocyte chemoattractant protein-1 and interleukin 6 expression via Toll-like receptor 2 pathway in mouse adipocytes,” Arteriosclerosis, thrombosis, and vascular biology, 30(11), 2242-8, 2010. |
|
[8] | Lee, N.Y., Park, K.Y., Min, H.J., Song, K.Y., Lim, Y.Y., Park, J., Kim, B.J., Kim, M.N., “Inhibitory effect of vitamin U (S-methylmethionine sulfonium chloride) on differentiation in 3T3-L1 pre-adipocyte cell lines,” Annals of Dermatology, 24(1), 39-44, 2012. |
|
[9] | Magrone, T., Perez de Heredia, F., Jirillo, E., Morabito, G., Marcos, A., Serafini, M., “Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases,” Canadian Journal of Physiology and Pharmacology, 91(6), 387-96, 2013. |
|
[10] | Subbaramaiah, K., Sue, E., Bhardwaj, P., Du, B., Hudis, C.A., Giri, D., Kopelovich, L., Zhou, X.K., Dannenberg, A.J., “Dietary polyphenols suppress elevated levels of proinflammatory mediators and aromatase in the mammary gland of obese mice,” Cancer Prevention Research (Philadelphia). 6(9), 886-97, 2013. |
|
[11] | Meydani, M., Hasan, S.T., “Dietary polyphenols and obesity,” Nutrients, 2(7), 737-51, Jul.2010. |
|
[12] | Badescu, M., Badulescu, O., Badescu, L., Ciocoiu, M., “Effects of Sambucus nigra and Aronia melanocarpa extracts on immune system disorders within diabetes mellitus,” Pharmaceutical Biology, 53(4), 533-9, 2015. |
|
[13] | Skarpańska-Stejnborn, A., Basta, P., Sadowska, J., Pilaczyńska-Szcześniak, L., “Effect of supplementation with chokeberry juice on the inflammatory status and markers of iron metabolism in rowers,” Journal of the International Society of Sports Nutrition, 11(1), 48, 2014. |
|
[14] | Tanaka, T., Tanaka, A., “Chemical components and characteristics of Black chokeberry,” Journal of the Japanese Society for Food Science and Technology, 48(8), 606-10, 2001. |
|
[15] | Kokotkiewicz, A., Jaremicz, Z., Luczkiewicz, M., “Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine,” Journal of Medicinal Food, 13(2), 255-69, 2010. |
|
[16] | Vlachojannis, C., Zimmermann, B.F., Chrubasik-Hausmann, S., “Quantification of anthocyanins in elderberry and chokeberry dietary supplements,” Phytotherapy Research, 29(4), 561-5. 2015. |
|
[17] | Hwang, E.S., Nhuan, D.T., “Antioxidant contents and antioxidant activities of hot-water extracts of aronia (aronia melancocarpa) with different drying methods,” Food Science and Biotechnology, 46(3), 303-8, 2014. |
|
[18] | Lim, J.D., Cha, H.S., Choung, M.G., Choi, R.N., Choi, D.J., Youn, A.R., “Antioxidant activities of acidic ethanol extract and the anthocyanin rich fraction from aronia melanocarpa,” Korean Journal of Food & Cookery Science, 30(5), 573-8, Oct.2014. |
|
[19] | Jurgonski, A., Juskiewicz, J., Zdunczyk, Z., “Ingestion of black chokeberry fruit extract leads to intestinal and systemic changes in a rat model of prediabetes and hyperlipidemia,” Plant Foods for Human Nutrition, 63(4), 176-82, Dec.2008. |
|
[20] | Qin, B., Anderson, R.A., “An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet,” The British Journal of Nutrition, 108(4), 581-7, 2012. |
|
[21] | Park, H., Liu, Y., Kim, H.S., Shin, J.H., “Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease,” Nutrition Research, 36(1), 57-64, 2016. |
|
[22] | Abdali, D., Samson, S.E., Grover, A.K., “How effective are antioxidant supplements in obesity and diabetes?” Medical Principles and Practice, 24(3), 201-15, 2015. |
|
[23] | Rangel-Huerta, O.D., Aguilera, C.M., Martin, M.V., Soto, M.J., Rico, M.C., Vallejo, F., Tomas-Barberan, F., Perez-de-la-Cruz, A.J., Gil, A., Mesa, M.D., “Normal or high polyphenol concentration in orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight Adults,” The Journal of Nutrition, 145(8), 1808-16, 2015. |
|
[24] | Alharbi, K.K., Syed, R., Khan, I.A., “Computational study on the interaction of flavonoids with fat mass and obesity associated protein,” Journal of Environmental Biology, 36(2), 419-24, 2015. |
|
[25] | Mohammed, A., Al-Numair, K.S., Balakrishnan, A., “Docking studies on the interaction of flavonoids with fat mass and obesity associated protein,” Pakistan Journal of Pharmaceutical Sciences, 28(5), 1647-53, 2015. |
|
[26] | Jung, H.J., “Comparison of Total Polyphenols, Total Flavonoids, and Biological Activities of Black Chokeberry and Blueberry Cultivated in Korea,” Journal of the Korean Society of Food Science and Nutrition, 43(9), 1349-56, Sep.2014. |
|
[27] | Lee, S.L., Lee, H.K., Chin, T.Y., Tu, S.C., Kuo, M.H., Kao, M.C., Wu, Y.C., “Inhibitory effects of purple sweet potato leaf extract on the proliferation and lipogenesis of the 3T3-L1 preadipocytes,” The American Journal of Chinese Medicine, 43(5), 915-25, 2015. |
|
[28] | Fujiwara, M., Mori, N., Sato, T., Tazaki, H., Ishikawa, S., Yamamoto, I., Arai, T., “Changes in fatty acid composition in tissue and serum of obese cats fed a high fat diet,” BMC Veterinary Research, 11, 200, 2015. |
|
[29] | Sun, Q., Chou, G., “Isoflavonoids from Crotalaria albida inhibit adipocyte differentiation and lipid accumulation in 3T3-L1 cells via suppression of PPAR-γ pathway,” PLoS One, 10(8), e0135893, 2015. |
|
[30] | Berger, J.P., “Role of PPARgamma, transcriptional cofactors, and adiponectin in the regulation of nutrient metabolism, adipogenesis and insulin action: view from the chair,” International Journal of Obesity (2005), 29 Suppl 1, S3-S4, 2005. |
|
[31] | Oliveira, D.M., Chalfun-Junior, A., Chizzotti, M.L., Barreto, H.G., Coelho, T.C., Paiva, L.V., Coelho, C.P., Teixeira, P.D., Schoonmaker, J.P., Ladeira, M.M., “Expression of genes involved in lipid metabolism in the muscle of beef cattle fed soybean or rumen-protected fat, with or without monensin supplementation,” Journal of Animal Science, 92(12), 5426-36, 2014. |
|
[32] | Gregoire, F.M., Smas, C.M., Sul, H.S., “Understanding adipocyte differentiation,” Physiological Reviews, 78(3), 783-809. Jul.1998. |
|
[33] | Kim, S.P., Nam, S.H., Friedman, M., “Mechanism of the antiadipogenic-antiobesity effects of a rice hull smoke extract in 3T3-L1 preadipocyte cells and in mice on a high-fat diet,” Food & Function, 6(9), 2939-48, 2015. |
|
[34] | Farr, O.M., Gavrieli, A., Mantzoros, C.S., “Leptin applications in 2015: what have we learned about leptin and obesity?” Current Opinion in Endocrinology, Diabetes, and Obesity, 22(5), 353-9. 2015. |
|
[35] | Lubkowska, A., Dudzińska, W., Bryczkowska, I., Dołęgowska, B., “Body composition, lipid profile, adipokine concentration, and antioxidant capacity changes during interventions to treat overweight with exercise programme and whole-body cryostimulation,” Oxidative Medicine and Cellular Longevity, 2015, 803197, 2015. |
|
[36] | Witzel, A.L., Kirk, C.A., Kania, S.A., Bartges, J.W., Boston, R.C., Moyers, T., Byrd, H., Lauten, S., “Relationship of adiponectin and its multimers to metabolic indices in cats during weight change,” Domestic Animal Endocrinology, 53, 70-7, 2015. |
|
[37] | Cantini, G., Di Franco, A., Samavat, J., Forti, G., Mannucci, E., Luconi, M., “Effect of liraglutide on proliferation and differentiation of human adipose stem cells,” Molecular and Cellular Endocrinology, 402, 43-50, 2015. |
|
[38] | Pan, Z., Wang, H., Liu, Y., Yu, C., Zhang, Y., Chen, J., Wang, X., Guan, Q., “Involvement of CSE/ H2S in high glucose induced aberrant secretion of adipokines in 3T3-L1 adipocytes,” Lipids in Health and Disease, 13, 155, 2014. |
|
[39] | Shen, Y., Song, S.J., Keum, N., Park, T., “Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis,” Evidence-Based. Complementary and Alternative Medicine, 2014, 971890, 2014. |
|