Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2015, 3(5), 341-351
DOI: 10.12691/jfnr-3-5-9
Open AccessArticle

Citrus Flavonoids and Human Cancers

Zunli Ke1, 2, Yu pan1, 2, Xiaodan Xu1, 2, Chao Nie1, 2 and Zhiqin Zhou1, 2,

1College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China

2Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China

Pub. Date: June 04, 2015

Cite this paper:
Zunli Ke, Yu pan, Xiaodan Xu, Chao Nie and Zhiqin Zhou. Citrus Flavonoids and Human Cancers. Journal of Food and Nutrition Research. 2015; 3(5):341-351. doi: 10.12691/jfnr-3-5-9


Nowadays cancers pose a great threat to the health of human beings. Based on studies on the flavonoids and other bioactive compounds of Citrus fruits in current literature, it was widely suggested that the consumption of Citrus fruits is beneficial to the prevention and treatment of human chronic diseases including cancers. In the past decades, the study concerning Citrus flavonoids has covered various areas including the type, content and distribution of flavonoids in fruits; their variation between wild and cultivated genotypes; their antioxidant, anti-inflammation, anti-aging, antimicrobial and anticarcinogenic activities. To enlighten future Citrus germplasm study, this review introduces briefly the functions of main types of Citrus flavonoids, including antioxidant, anti-inflammation and anti-aging activities, and their relationships to human cancers. Most importantly, the mechanisms of action by which Citrus flavonoids play their roles in human cancer prevention and treatment were summarized.

Citrus fruits antioxidant anti-inflammation anti-aging human cancers mechanism of action

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Tripoli E, La Guardia M, Giammanco S, et al. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food chemistry, 104(2): 466-479. 2007.
[2]  Radhika G, Sudha V, Mohan Sathya R, et al. Association of fruit and vegetable intake with cardiovascular risk factors in urban south Indians. British Journal of Nutrition, 99(02): 398-405. 2008.
[3]  Wang Y C, Chuang Y C, Hsu H W. The flavonoid, carotenoid and pectin content in peels of Citrus cultivated in Taiwan. Food chemistry, 106(1): 277-284. 2008.
[4]  Ghasemi K, Ghasemi Y, Ebrahimzadeh M A. Antioxidant activity, phenol and flavonoid contents of 13 Citrus species peels and tissues. Pak J Pharm Sci, 22(3): 277-281. 2009.
[5]  Harborne J B, Williams C A. Advances in flavonoid research since 1992. Phytochemistry, 55(6): 481-504. 2000.
[6]  Horowitz R, Gentili B. Flavonoid constituents of Citrus. Citrus science and technology, 1(1): 397-426.1997.
[7]  Miyake Y, Yamamoto K, Morimitsu Y, Osawa T. Isolation of C-glucosylflavone from lemon peel and antioxidative activity of flavonoid compounds in lemon fruit. Journal of agricultural and food chemistry, 45(12): 4619-4623. 1997.
[8]  Zhang Y, Sun Y, Xi W, Shen Y, Qiao L, et al. Phenolic compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chemistry, 145: 674-680. 2014.
[9]  Nogata Y, Sakamoto K, Shiratsuchi H, et al. Flavonoid composition of fruit tissues of Citrus species. Bioscience, biotechnology, and biochemistry, 70(1): 178-192. 2006.
[10]  Bermejo A, Llosá MJ, Cano A. Analysis of bioactive compounds in seven Citrus cultivars. Food Science and Technology International: 1082013210368556. Mar.2011.
[11]  Xi W, Fang B, Zhao Q, Jiao B, Zhou Z. Flavonoid composition and antioxidant activities of Chinese local pummelo (Citrus grandis Osbeck.) varieties. Food chemistry, 161: 230-238. 2014.
[12]  Wang Y C, Chuang Y C, Ku Y H. Quantitation of bioactive compounds in Citrus fruits cultivated in Taiwan. Food chemistry, 102(4): 1163-1171. 2007.
[13]  Protti M, Valle F, Poli F, et al. Bioactive molecules as authenticity markers of Italian Chinotto (Citrus× myrtifolia) fruits and beverages. Journal of pharmaceutical and biomedical analysis, 104: 75-80. Feb.2015.
[14]  Kawaii S, Tomono Y, Katase E, Ogawa K, Yano M. Quantitation of flavonoid constituents in Citrus fruits. Journal of Agricultural and Food Chemistry, 47(9): 3565-3571. 1999.
[15]  Miyake Y, Yamamoto K, Morimttsu y, et al. Characteristics of Antioxidative Flavonoid Glycosides in Lemon Fruit. Food Science and Technology International, Tokyo, 4(1): 48-53. 1998.
[16]  Peterson JJ, Beecher GR, Bhagwat SA, Dwyer JT, Gebhardt SE, et al. Flavanones in grapefruit, lemons, and limes: A compilation and review of the data from the analytical literature. Journal of food composition and analysis, 19: S74-S80. Aug.2006.
[17]  Peterson JJ, Dwyer JT, Beecher GR, Bhagwat SA, Gebhardt SE, et al. Flavanones in oranges, tangerines (mandarins), tangors, and tangelos: a compilation and review of the data from the analytical literature. Journal of Food Composition and Analysis, 19: S66-S73. Aug.2006.
[18]  Bocco A, Cuvelier M-E, Richard H, Berset C. Antioxidant activity and phenolic composition of Citrus peel and seed extracts. Journal of Agricultural and Food Chemistry, 46(6): 2123-2129. 1998.
[19]  Sharma V, Shakya A, Arya G S, et al. Chemical and potenial aspects of anthocyanins--a water soluble vacuolar flavonoid pigments: a review. International Journal of Pharmaceutical Sciences Review & Research, 6(1). 2011.
[20]  Crifò T, Petrone G, Lo Cicero L, et al. Short cold storage enhances the anthocyanin contents and level of transcripts related to their biosynthesis in blood oranges. Journal of agricultural and food chemistry, 60(1): 476-481. 2011.
[21]  Hillebrand S, Schwarz M, Winterhalter P. Characterization of anthocyanins and pyranoanthocyanins from blood orange [Citrus sinensis (L.) Osbeck] juice. Journal of Agricultural and Food Chemistry, 52(24): 7331-7338. 2004.
[22]  Rapisarda P, Fanella F, Maccarone E. Reliability of analytical methods for determining anthocyanins in blood orange juices. Journal of Agricultural and Food Chemistry, 48(6): 2249-2252. 2000.
[23]  Kelebek H, Canbas A, Selli S. Determination of phenolic composition and antioxidant capacity of blood orange juices obtained from cvs. Moro and Sanguinello (Citrus sinensis (L.) Osbeck) grown in Turkey. Food Chemistry, 107(4): 1710-1716. 2008.
[24]  Herrmann K. Flavonols and flavones in food plants: a review. International Journal of Food Science & Technology, 11(5): 433-448. 1976.
[25]  Benavente-García O, Castillo J, Marin FR, Ortuño A, Del Río JA. Uses and properties of Citrus flavonoids. Journal of Agricultural and Food Chemistry, 45(12): 4505-4515. 1997.
[26]  Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7): 933-956.1996.
[27]  Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, et al. Oxidative stress and cancer: an overview. Ageing research reviews, 12(1): 376-390.2013.
[28]  Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nature Reviews Cancer, 13(11): 759-771. 2013.
[29]  Krishnaiah D, Sarbatly R, Bono A. Phytochemical antioxidants for health and medicine–A move towards nature. Biotechnol Mol Biol Rev, 1(4): 97-104. 2007.
[30]  Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews, 56(11): 317-333. 1998.
[31]  Yu J, Wang L, Walzem RL, Miller EG, Pike LM, et al. Antioxidant activity of Citrus limonoids, flavonoids, and coumarins. Journal of agricultural and food chemistry, 53(6): 2009-2014. 2005.
[32]  Abeysinghe D, Li X, Sun C, Zhang W, Zhou C, et al. Bioactive compounds and antioxidant capacities in different edible tissues of Citrus fruit of four species. Food chemistry, 104(4): 1338-1344. 2007.
[33]  Miyake Y, Mochizuki M, Okada M, Hiramitsu M, Morimitsu Y, et al. Isolation of antioxidative phenolic glucosides from lemon [Citrus limon] juice and their suppressive effect on the expression of blood adhesion molecules. Bioscience, Biotechnology and Biochemistry (Japan), Aug. 2007.
[34]  Hirata A, Murakami Y, Shoji M, Kadoma Y, Fujisawa S. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer research, 25(5): 3367-3374. 2005.
[35]  Jung HA, Jung MJ, Kim JY, Chung HY, Choi JS. Inhibitory activity of flavonoids fromPrunus davidiana and other flavonoids on total ROS and hydroxyl radical generation. Archives of pharmacal research, 26(10): 809-815. 2003.
[36]  Wilmsen PK, Spada DS, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of agricultural and food chemistry, 53(12): 4757-4761. 2005.
[37]  Toumi ML, Merzoug S, Boutefnouchet A, Tahraoui A, Ouali K, et al. Hesperidin, a natural Citrus flavanone, alleviates hyperglycaemic state and attenuates embryopathies in pregnant diabetic mice. Journal of Medicinal Plants Research, 3(11): 862-869. 2009.
[38]  Ali M M, El Kader M A A. The influence of naringin on the oxidative state of rats with streptozotocin-induced acute hyperglycaemia. Zeitschrift fur Naturforschung C, 59: 726-733. 2004.
[39]  Jung UJ, Lee M-K, Park YB, Kang MA, Choi M-S. Effect of Citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. The international journal of biochemistry & cell biology, 38(7): 1134-1145. 2006.
[40]  Kang D H. Oxidative stress, DNA damage, and breast cancer. AACN Advanced Critical Care, 13(4): 540-549. 2002.
[41]  Ames B N, Gold L S. Animal cancer tests and cancer prevention. Journal of the National Cancer Institute. Monographs, (12): 125-132.1991.
[42]  Schulte-Hermann R, Timmermann-Trosiener I, Barthel G, Bursch W. DNA synthesis, apoptosis, and phenotypic expression as determinants of growth of altered foci in rat liver during phenobarbital promotion. Cancer research, 50(16): 5127-5135.1990.
[43]  Bensaad K, Vousden KH. Savior and slayer: the two faces of p53. Nature medicine, 11(12): 1278-1279. 2005.
[44]  Klaunig J E, Xu Y, Isenberg J S, et al. The role of oxidative stress in chemical carcinogenesis. Environmental Health Perspectives, 106(Suppl 1): 289.Feb.1998.
[45]  Ferrero Miliani L, Nielsen O, Andersen P, Girardin S. Chronic inflammation: importance of NOD2 and NALP3 in interleukin‐1β generation. Clinical & Experimental Immunology, 147(2): 227-235. 2007.
[46]  Schetter A J, Heegaard N H H, Harris C C. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 31(1): 37-49. 2010.
[47]  Aggarwal BB, Vijayalekshmi R, Sung B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clinical Cancer Research, 15: 425-430. Jan.2009.
[48]  Manthey JA, Guthrie N, Grohmann K. Biological properties of Citrus flavonoids pertaining to cancer and inflammation. Current Medicinal Chemistry, 8(2): 135-153. 2001.
[49]  Landolfi R, Mower RL, Steiner M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids: structure-activity relations. Biochemical pharmacology, 33(9): 1525-1530. 984.
[50]  B Gil, MJ Sanz, MC Tereniao, ML Ferrándiz, G Bustos, et al. Effects of flavonoids on Naja naja and human recombinant synovial phospholipases A2 and inflammatory responses in mice. Life Sciences, 54(20). 1994.
[51]  Dana, R., H. L. Malech, and R. Levy. The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem. Journal, 297: 217-223. Mar. 1994.
[52]  Zallen G, Moore E E, Johnson J L, et al. New mechanisms by which secretory phospholipase A2 stimulates neutrophils to provoke the release of cytotoxic agents. Archives of Surgery, 133(11): 1229-1232. 1998.
[53]  Park H Y, Choi H D, Eom H, et al. Enzymatic modification enhances the protective activity of Citrus flavonoids against alcohol-induced liver disease. Food Chemistry, 139(1): 231-240. 2013.
[54]  Devaraj S, Jialal I, Rockwood J, Zak D. Effect of orange juice and beverage with phytosterols on cytokines and PAI-1 activity. Clinical nutrition, 30(5): 668-671.2011.
[55]  Buscemi S, Rosafio G, Arcoleo G, et al. Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk, The American journal of clinical nutrition, 95(5): 1089-1095. 2012.
[56]  Ho S C, Kuo C T. Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citrus reticulatae pericarpium). Food and Chemical Toxicology, 71: 176-182. Sep.2014.
[57]  Shu Z, Yang B, Zhao H, Xu B, Jiao W, et al. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells. International Immunopharmacology, 19(2): 275-282. 2014.
[58]  Okuyama S, Yamamoto K, Mori H, et al. Auraptene in the Peels of Citrus kawachiensis (Kawachi Bankan) Ameliorates Lipopolysaccharide-Induced Inflammation in the Mouse Brain. Evidence-Based Complementary and Alternative Medicine, 42: 743-767. May.2014.
[59]  Annadurai T, Thomas P A, Geraldine P. Ameliorative effect of naringenin on hyperglycemia-mediated inflammation in hepatic and pancreatic tissues of Wistar rats with streptozotocin- nicotinamide-induced experimental diabetes mellitus. Free Radical Research, 47(10): 793-803. 2013.
[60]  Yoshida H, Watanabe W, Oomagari H, et al. Citrus flavonoid naringenin inhibits TLR2 expression in adipocytes. The Journal of nutritional biochemistry, 24(7): 1276-1284. 2013.
[61]  Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? The lancet, 357(9255): 539-545. 2001.
[62]  Philip M, Rowley DA, Schreiber H, Philip M, Rowley. DA Inflammation as a tumor promoter in cancer induction. Seminars in Cancer Biology, 14(6): 433-439. 2004.
[63]  Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbeck's Archives of Surgery, 391(5): 499-510. 2006.
[64]  Coussens L M, Werb Z. Inflammation and cancer. Nature, 420(6917): 860-867. 2002.
[65]  Mantovani A. Cancer: inflammation by remote control. Nature, 435: 752-753. Jun. 2005.
[66]  Grivennikov S I, Greten F R, Karin M. Immunity, inflammation, and cancer. Cell, 140(6): 883–899. 2010.
[67]  Ekbom A, Adami H O, Helmick C, et al. Increased risk of large-bowel cancer in Crohn's disease with colonic involvement. Lancet, 336 (8711): 357-359. 1990.
[68]  Gillen C D, Walmsley R S, Prior P, et al. Ulcerative colitis and Crohn's disease: a comparison of the colorectal cancer risk in extensive colitis. Gut, 35(11): 1590-1592. 1994.
[69]  Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development. Molecular Cancer Research, 4(4): 221-233. 2006.
[70]  Salthouse T A. When does age-related cognitive decline begin? Neurobiology of aging, 30(4): 507-514. 2009.
[71]  Schaie K W. Developmental influences on adult intelligence: The Seattle longitudinal study. Oxford University Press, 2012.
[72]  Getoff N, Anti-aging and aging factors in life. The role of free radicals. Radiation Physics and Chemistry, 76(10): 1577-1586. 2007.
[73]  Birbrair A, Zhang T, Wang Z M, et al. Type-1 Pericytes Participate in Fibrous Tissue Deposition in Aged Skeletal Muscle. American Journal of Physiology-Cell Physiology, 305(11): C1098-C1113. 2013.
[74]  Shakibaei M, Harikumar K B, Aggarwal B B. Resveratrol addiction: to die or not to die. Molecular nutrition & food research, 53(1): 115–128. 2009.
[75]  Belinha I, Amorim M A, Rodrigues P, et al. Quercetin Increases Oxidative Stress Resistance and Longevity in Saccharomyces cerevisiae. Journal of agricultural and food chemistry, 55(6): 2446-2451. 2007.
[76]  Sun K, Xiang L, Ishihara S, et al. Anti-aging effects of hesperidin on Saccharomyces cerevisiae via inhibition of reactive oxygen species and UTH1 gene expression. Bioscience, Biotechnology, and Biochemistry, 76(4): 640-645. 2012.
[77]  Campisi J, Aging, cellular senescence, and cancer. Annual review of physiology, 75: 685. Sep.2013.
[78]  Krtolica A, Campisi J, Cancer and aging: a model for the cancer promoting effects of the aging stroma. The international journal of biochemistry & cell biology, 34(11): 1401-1414. 2002.
[79]  Benz C C, Campisi J, Cohen H J, et al. Meeting report: Translational Research at the Aging and Cancer Interface. Cancer research, 4560-4563. 007.
[80]  World Health Organization. World Cancer Report 2014 (ePUB). WHO. int. http://apps. who. int/bookorders/anglais/detart1. jsp, 2014.
[81]  Sankpal U T, Pius H, Khan M, et al. Environmental factors in causing human cancers: emphasis on tumorigenesis. Tumor Biology, 33(5): 1265-1274. 2012.
[82]  Nile S H, Park S W. Edible berries: bioactive components and their effect on human health. Nutrition, 30(2): 134-144. 2014.
[83]  Manthey J A, Guthrie N. Antiproliferative activities of Citrus flavonoids against six human cancer cell lines. Journal of Agricultural and Food Chemistry, 50(21): 5837-5843. 2002.
[84]  Kandaswami C, Perkins E, Soloniuk D S, et al. Antiproliferative effects of Citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Letters, 56(2): 147-152. 1991.
[85]  Ortuno A, Benavente-Garcia O, Castillo J, et al. Beneficial Action of Citrus Flavonoids on Multiple Cancer-Related Biological Pathways. Current cancer drug targets, 7(8): 795-809. 2007.
[86]  Senderowicz A M. Development of cyclin-dependent kinase modulators as novel therapeutic approaches for hematological malignancies. Leukemia, 15(1): 1-9. 2001.
[87]  Bast RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, et al. Cell Proliferation, Differentiation, and Apoptosis. BC Decker, Hamilton, 2000.
[88]  Kawaii S, Tomono Y, Katase E, et al. Antiproliferative activity of flavonoids on several cancer cell lines. Bioscience Biotechnology and Biochemistry, 63(5): 896-899. 1999.
[89]  Angst E, Park J L, Moro A, et al. The flavonoid quercetin inhibits pancreatic cancer growth in vitro and in vivo. Pancreas, 42(2): 223. Mar.2013.
[90]  Ghorbani A, Nazari M, Jeddi-Tehrani M, et al. The Citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. European journal of nutrition, 51(1): 39-46. 2012.
[91]  Aranganathan S, Nalini N. Antiproliferative efficacy of hesperetin (Citrus Flavanoid) in 1, 2-Dimethylhydrazine-induced colon cancer. Phytotherapy Research, 27(7): 999–1005. 2013.
[92]  Lee AC-L, Hsiao W-C, Wright DE, Chong SY, Leow SK, et al. Induction of GADD45α expression contributes to the anti-proliferative effects of polymethoxyflavones on colorectal cancer cells. Journal of Functional Foods, 5(2): 616–624. 2013.
[93]  Yoshimizu N, Otani Y, Saikawa Y, et al. Anti-tumour effects of nobiletin, a Citrus flavonoid, on gastric cancer include: antiproliferative effects, induction of apoptosis and cell cycle deregulation. Alimentary Pharmacology & Therapeutics, 20(s1): 95–101. 2004.
[94]  Arivazhagan L, Pillai SS. Tangeretin, a Citrus pentamethoxyflavone, exerts cytostatic effect via p53/p21 up-regulation and suppresses metastasis in 7, 12-dimethylbenz (α) anthracene-induced rat mammary carcinoma. The Journal of nutritional biochemistry, 25(11): 1140-1153. 2014.
[95]  Pap M, Cooper G M. Role of Glycogen Synthase Kinase-3 in the Phosphatidylinositol 3-Kinase/Akt Cell Survival Pathway. The Journal of Biological Chemistry, 273(32): 19929-19932. 1998.
[96]  Luo J, Kamata H, Karin M. IKK/NF-κB signaling: balancing life and death - a new approach to cancer therapy. Journal of Clinical Investigation, 115(10) : 2625-2632. 2005.
[97]  Johnson J L, Mejia E G. Flavonoid apigenin modified gene expression associated with inflammation and cancer and induced apoptosis in human pancreatic cancer cells through inhibition of GSK-3β/NF-κB signaling cascade. Molecular Nutrition & Food Research, 57(12): 2112-2127. 2013.
[98]  Murakami A, Nakamura Y, Torikai K, et al. Inhibitory effect of Citrus nobiletin on phorbol ester-induced skin inflammation, oxidative stress, and tumor promotion in mice. Cancer research, 60(18): 5059-5066. 2000.
[99]  Aoki K, Yokosuka A, Mimaki Y, et al. Nobiletin induces inhibitions of Ras activity and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling to suppress cell proliferation in C6 rat glioma cells. Biological and Pharmaceutical Bulletin, 36(4): 540-547. 2013.
[100]  Hsiao P C, Lee W J, Yang S F, et al. Nobiletin suppresses the proliferation and induces apoptosis involving MAPKs and caspase-8/-9/-3 signals in human acute myeloid leukemia cells. Tumor Biology, 35(12): 11903-11911. 2014.
[101]  Zhang Y, Dou H, Li H, et al. The Citrus flavonoid nobiletin inhibits proliferation and induces apoptosis in human pancreatic cancer cells in vitro. Food Science and Biotechnology, 23(1): 225-229. 2014.
[102]  Bulzomi P, Bolli A, Galluzzo P, Leone S, Acconcia F, et al. Naringenin and 17β‐estradiol coadministration prevents hormone‐induced human cancer cell growth. IUBMB Life, 62(1): 51-60. 2009.
[103]  Massagué J, Gupta GP. Cancer Metastasis: Building a Framework. Cell, 127(4):679-695. 2006.
[104]  Koumoutsakos P, Pivkin I, Milde F. The fluid mechanics of cancer and its therapy. Annual review of fluid mechanics, 45(1): 325. 2013.
[105]  Khan A R, James M N G. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Science, 7(4): 815-836. 1998.
[106]  Ishiwa J, Sato T, Mimaki Y, et al. A Citrus flavonoid, nobiletin, suppresses production and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. The Journal of Rheumatology, 27(1): 20-25. 2000.
[107]  Lee E J, Kim D I, Kim W J, et al. Naringin inhibits matrix metalloproteinase‐9 expression and AKT phosphorylation in tumor necrosis factor‐α‐induced vascular smooth muscle cells. Molecular Nutrition & Food Research, 53(12): 1582-1591.Dce. 2009.
[108]  Lentini A, Forni C, Provenzano B, et al. Enhancement of transglutaminase activity and polyamine depletion in B16-F10 melanoma cells by flavonoids naringenin and hesperitin correlate to reduction of the in vivo metastatic potential. Amino acids, 32(1): 95-100. 2007.
[109]  Park K-I, Park H-S, Kim M-K, Hong G-E, Nagappan A, et al. Flavonoids identified from Korean Citrus aurantium L. inhibit Non-Small Cell Lung Cancer growth in vivo and in vitro. Journal of Functional Foods, 7: 287-297. Mar.2014.
[110]  Chen H J, Lin C M, Lee C Y, et al. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology reports, 30(2): 925-932. 2013.
[111]  Rooprai HK, Kandanearatchi A, Maidment SL, Christidou M, Trillo-Pazos G, et al. Evaluation of the effects of swainsonine, captopril, tangeretin and nobiletin on the biological behaviour of brain tumour cells in vitro. Neuropathology and Applied Neurobiology, 27(1): 29-39. 2001.
[112]  Lai C S, Li S, Miyauchi Y, et al. Potent anti-cancer effects of Citrus peel flavonoids in human prostate xenograft tumors. Food & Function, 4(6): 944-949. 2013.
[113]  Goncharova E A, Ammit A J, Irani C, et al. PI3K is required for proliferation and migration of human pulmonary vascular smooth muscle cells. American Journal of Physiology-Lung Cellular and Molecular Physiology, 283(2): L354-L363. 2002.
[114]  Seo J, Lee H S, Ryoo S, et al. Tangeretin, a Citrus flavonoid, inhibits PGDF-BB-induced proliferation and migration of aortic smooth muscle cells by blocking AKT activation. European journal of pharmacology, 673(1): 56-64. 2011.
[115]  Shih Y W, Chen P S, Wu C H, et al. α-Chaconine-reduced metastasis involves a PI3K/Akt signaling pathway with downregulation of NF-κB in human lung adenocarcinoma A549 cells. Journal of Agricultural and Food Chemistry, 55(26): 11035-11043. 2007.
[116]  Lee Y C, Cheng T H, Lee J S, et al. Nobiletin, a Citrus flavonoid, suppresses invasion and migration involving FAK/PI3K/Akt and small GTPase signals in human gastric adenocarcinoma AGS cells. Molecular and Cellular Biochemistry, 347(1-2): 103-115. 2011.
[117]  Shi M D, Liao Y C, Shih Y W, et al. Nobiletin attenuates metastasis via both ERK and PI3K/Akt pathways in HGF-treated liver cancer HepG2 cells. Phytomedicine, 20(8): 743-752. 2013.
[118]  Miyata Y, Sato T, Imada K, et al. A Citrus polymethoxyflavonoid, nobiletin, is a novel MEK inhibitor that exhibits antitumor metastasis in human fibrosarcoma HT-1080 cells. Biochemical and Biophysical Research Communications, 366(1): 168-173. 2008.
[119]  Tan T W, Chou Y E, Yang W H, et al. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126. International Immunopharmacology, 22(1): 107-114. 2014.
[120]  Franco C A, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel?. Current Opinion in Genetics & Development, 19(5): 476-483. 2009.
[121]  Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. cell, 144(5): 646-674. 2011.
[122]  Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis. The Journal of Experimental Medicine, 133(2): 275-288. 1971.
[123]  Gordon M S, Mendelson D S, Kato G. Tumor angiogenesis and novel antiangiogenic strategies. International Journal of Cancer, 126(8): 1777-1787. 2010.
[124]  Deryugina E I, Quigley J P. Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25(1): 9-34.. 2006.
[125]  Dulak J, Józkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Current Cancer Drug Targets, 5(8): 579. 2005.
[126]  Pandya N M, Dhalla N S, Santani D D. Angiogenesis—a new target for future therapy. Vascular Pharmacology, 44(5): 265-274. 2006.
[127]  Lam I K, Alex D, Wang Y H, et al. In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent. Molecular Nutrition & Food Research, 56(6): 945-956. 2012.
[128]  Lam K H, Alex D, Lam I K, et al. Nobiletin, a polymethoxylated flavonoid from Citrus, shows anti-angiogenic activity in a zebrafish in vivo model and HUVEC in vitro model. Journal of Cellular Biochemistry, 112(11): 3313-3321. 2011.