Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2025, 13(3), 127-139
DOI: 10.12691/jfnr-13-3-2
Open AccessArticle

Characterization of Anti-Cancer Effects of the Ethyl Acetate Fraction from Orostachys japonicus on HT-29 Human Colon Cancer Cells

Hyun Ji Lee1 and Dong Seok Lee1, 2,

1Department of Smart Food and Drug, Graduate School, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea

2Institute of Digital Anti-aging Healthcare, Graduate School, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea;Department of Biomedical Laboratory Science, Inje University, 197 Inje-ro, Gimhae 50834, Republic of Korea

Pub. Date: March 19, 2025

Cite this paper:
Hyun Ji Lee and Dong Seok Lee. Characterization of Anti-Cancer Effects of the Ethyl Acetate Fraction from Orostachys japonicus on HT-29 Human Colon Cancer Cells. Journal of Food and Nutrition Research. 2025; 13(3):127-139. doi: 10.12691/jfnr-13-3-2

Abstract

The ethyl acetate fraction from Orostachys japonicus (OJE) is a mixture of flavonols (kaempferol and quercetin) and flavonol glycosides (afzelin, astragalin, quercitrin, and isoquercitrin), and there is little information about the interactive effects of these components on the anti-colon cancer activities. A comprehensive investigation of the anti-colon cancer activities obtained by combined or single treatment of OJE, kaempferol, or quercetin was performed to confirm the roles of key components contained in OJE. OJE alone or OJE supplemented with kaempferol and quercetin showed greater anti-colon cancer activities, namely, in inducing apoptosis, cell cycle arrest, anti-metastasis, and upstream signal transduction than the combination of kaempferol and quercetin without OJE, kaempferol alone or quercetin alone. The combination of kaempferol and quercetin without OJE was also superior to kaempferol or quercetin alone in exerting anti-colon cancer activities via various manners. The consistent cooperative effects were revealed among flavonols and flavonol glycosides.

Keywords:
Orostachys japonicus apoptosis cell cycle arrest anti-metastasis flavonol flavonol glycoside

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 10

References:

[1]  Peer, D., Karp, J. M., Hong, S., Farokhzad, O. C., Margalit, R., and Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nano-enabled medical applications, London, 2020, 61-91.
 
[2]  Zugazagoitia, J., Guedes, C., Ponce, S., Ferrer, I., Molina-Pinelo, S., and Paz-Ares, L. Current challenges in cancer treatment. Clinical therapeutics, 38(7), 1551-1566, Jul, 2016.
 
[3]  Cosse, J. P., and Michiels, C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 8(7), 790-797, 2008.
 
[4]  Kamei, K. I., Kato, Y., Hirai, Y., Ito, S., Satoh, J., Oka, A., Tsuchiya,T., Yong, C., and Tabata, O. Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC advances, 7(58), 36777-36786, Jul, 2017.
 
[5]  Ryu, D. S., Kim, S. H., Kwon, J. H., and Lee., D. S, Orostachys japonicus induces apoptosis and cell cycle arrest through the mitochondria-dependent apoptotic pathway in AGS human gastric cancer cells. International journal of oncology, 45(1), 459-469 Apr, 2014.
 
[6]  Lee, J. H., Lee, S. J., Park, S., Kim, H. K., Jeong, W. Y., Choi, J. Y., & Shin, S. C. Characterisation of flavonoids in Orostachys japonicus A. Berger using HPLC–MS/MS: Contribution to the overall antioxidant effect. Food Chemistry, 124(4), 1627-1633, Feb, 2011
 
[7]  Lee, H. S., Ryu, D. S., Lee, G. S., & Lee, D. S. Anti-inflammatory effects of dichloromethane fraction from Orostachys japonicus in RAW 264.7 cells: suppression of NF-κB activation and MAPK signaling. Journal of ethnopharmacology, 140(2), 271-276, Mar, 2012.
 
[8]  Choi, J. H., Jin, S. W., Lee, G. H., Cho, S. M., & Jeong, H. G. Orostachys japonicus ethanol extract inhibits 2, 4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in NC/Nga mice and TNF-α/IFN-γ-induced TARC expression in HaCaT cells. Toxicological research, 36, 99-108, Nov, 2020.
 
[9]  Lamichhane, R., Pandeya, P. R., Lee, K. H., Lamichhane, G., Cheon, J. Y., Park, H. S., ... & Jung, H. J. Evaluation of Anti-Obesity and Antidiabetic Activities of Orostachys japonicus in Cell and Animal Models. Pharmaceuticals, 17(3), 357, Nov, 2024.
 
[10]  Hur, S., Jang, E., & Lee, J. H. Beneficial actions of Orostachys japonica and its compounds against tumors via MAPK signaling pathways. Nutrients, 13(2), 555, Feb, 2021.
 
[11]  Park, H. J., Young, H. S., Park, K. Y., Rhee, S. H., Chung, H. Y., & Choi, J. S. Flavonoids from the whole plants of Orostachys japonicus. Archives of Pharmacal Research, 14, 167-171, 1991
 
[12]  Kashyap, D., Sharma, A., Tuli, H. S., Sak, K., Punia, S., & Mukherjee, T. K. Kaempferol–A dietary anticancer molecule with multiple mechanisms of action: Recent trends and advancements. Journal of functional foods, 30, 203-219, Mar, 2017.
 
[13]  Reyes-Farias, M., & Carrasco-Pozo, C. The anti-cancer effect of quercetin: molecular implications in cancer metabolism. International journal of molecular sciences, 20(13), 3177, Jun, 2019.
 
[14]  Opferman, J. T., & Korsmeyer, S. J. Apoptosis in the development and maintenance of the immune system. Nature immunology, 4(5), 410-415, May, 2003.
 
[15]  Wang J. H., Zhou Y. J. & He P. Staphylococcus aureus induces apoptosis of human monocytic U937 cells via NF-κB signaling pathways. Microbial pathogenesis, 49, 252-259, Nov, 2010.
 
[16]  Green, D. R. Apoptotic pathways: ten minutes to dead. Cell, 121(5), 671-674, Jun, 2005.
 
[17]  Cai, J., Yang, J., & Jones, D. Mitochondrial control of apoptosis: the role of cytochrome c. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1366(1-2), 139-149, Aug, 1998.
 
[18]  Favaloro, B., Allocati, N., Graziano, V., Di Ilio, C., & De Laurenzi, V. Role of apoptosis in disease. Aging (Albany NY), 4(5), 330, May, 2012.
 
[19]  Collins, J. A., Schandl, C. A., Young, K. K., Vesely, J., & Willingham, M. C. Major DNA fragmentation is a late event in apoptosis. Journal of Histochemistry & Cytochemistry, 45(7), 923-934, Jul, 1997.
 
[20]  Sun, X. M., MacFarlane, M., Zhuang, J., Wolf, B. B., Green, D. R., & Cohen, G. M. (1999). Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. Journal of Biological Chemistry, 274(8), 5053-5060, Feb, 1999.
 
[21]  Shlomovitz, I., Speir, M., & Gerlic, M. Flipping the dogma–phosphatidylserine in non-apoptotic cell death. Cell Communication and Signaling, 17, 1-12, Oct, 2019.
 
[22]  Sakaue-Sawano, A., Kurokawa, H., Morimura, T., Hanyu, A., Hama, H., Osawa, H., ... & Miyawaki, A. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132(3), 487-498, Feb, 2008.
 
[23]  Elledge, S. J. Cell cycle checkpoints: preventing an identity crisis. Science, 274(5293), 1664-1672, Dec, 1996.
 
[24]  Molinari, M. Cell cycle checkpoints and their inactivation in human cancer. Cell proliferation, 33(5), 261-274, 2000.
 
[25]  Sherr, C. J., & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & development, 13(12), 1501-1512, 1999.
 
[26]  Hochegger, H., Takeda, S., & Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all?. Nature reviews Molecular cell biology, 9(11), 910-916, Sep, 2008.
 
[27]  Malumbres, M., & Barbacid, M. Mammalian cyclin-dependent kinases. Trends in biochemical sciences, 30(11), 630-641, Nov, 2005.
 
[28]  Geiger, T. R., & Peeper, D. S. Metastasis mechanisms. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1796(2), 293-308, Dec, 2009.
 
[29]  Shirafkan, N., Shomali, N., Kazemi, T., Shanehbandi, D., Ghasabi, M., Baghbani, E., Ganji, M., Khaze, V., Mansoori, B., & Baradaran, B. microRNA‐193a‐5p inhibits migration of human HT‐29 colon cancer cells via suppression of metastasis pathway. Journal of cellular biochemistry, 120(5), 8775-8783, Dec, 2019.
 
[30]  Zare, Z., Dizaj, T. N., Lohrasbi, A., Sheikhalishahi, Z. S., Asadi, A., Zakeri, M., Hosseinabadi F., Abazari, O., Abbasi, O., & Khanicheragh, P. Silibinin inhibits TGF-β-induced MMP-2 and MMP-9 through Smad Signaling pathway in colorectal cancer HT-29 cells. Basic & Clinical Cancer Research, 12(2), 81-90, Mar, 2020.
 
[31]  Martín, M., Simon-Assmann, P., Kedinger, M., Martin, M., Mangeat, P., Real, F. X., & Fabre, M. DCC regulates cell adhesion in human colon cancer derived HT-29 cells and associates with ezrin. European journal of cell biology, 85(8), 769-783, Aug, 2006.
 
[32]  Bourboulia, D., & Stetler-Stevenson, W. G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. In Seminars in cancer biology (Vol. 20, No. 3, pp. 161-168). Academic Press. Jun, 2010.
 
[33]  Ladoux, B., & Mège, R. M. Mechanobiology of collective cell behaviours. Nature reviews Molecular cell biology, 18(12), 743-757, Nov, 2017.
 
[34]  Nishida, E., & Gotoh, Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends in biochemical sciences, 18(4), 128-131, Apr, 1993.
 
[35]  Yang, S. H., Sharrocks, A. D., & Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene, 320, 3-21, Nov, 2003.
 
[36]  Shebaby, W. N., Bodman-Smith, K. B., Mansour, A., Mroueh, M., Taleb, R. I., El-Sibai, M., & Daher, C. F. Daucus carota pentane-based fractions suppress proliferation and induce apoptosis in human colon adenocarcinoma HT-29 cells by inhibiting the MAPK and PI3K pathways. Journal of medicinal food, 18(7), 745-752, Jun, 2015.
 
[37]  Kim, H. J., Kim, J. C., Min, J. S., Kim, M. J., Kim, J. A., Kor, M. H., Yoo, H. S., & Ahn, J. K. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells. Journal of ethnopharmacology, 136(1), 197-203, Jun, 2011.
 
[38]  Parrish, A. B., Freel, C. D., & Kornbluth, S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harbor perspectives in biology, 5(6), a008672, 2013.
 
[39]  Salvesen, G.S., Riedl. Caspase Mechanisms. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht, 13-23, 2008.
 
[40]  Jiang, Y., Wang, X., & Hu, D. Furanodienone induces G0/G1 arrest and causes apoptosis via the ROS/MAPKs-mediated caspase-dependent pathway in human colorectal cancer cells: a study in vitro and in vivo. Cell Death & Disease, 8(5), e2815-e2815, May, 2017.