Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2024, 12(10), 446-460
DOI: 10.12691/jfnr-12-10-7
Open AccessArticle

Identification of Extracts from “one Steaming and one Sun-drying” Black Panax quinquefolius and Mechanism of Majoroside F6 in Inhibiting Breast Cancer Cell

Rui Ma1, Hantian Guo1, Mengqing Guo1, Shen Li1, Liwen Tang1 and Yao Sun1,

1College of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, jilin, China

Pub. Date: October 29, 2024

Cite this paper:
Rui Ma, Hantian Guo, Mengqing Guo, Shen Li, Liwen Tang and Yao Sun. Identification of Extracts from “one Steaming and one Sun-drying” Black Panax quinquefolius and Mechanism of Majoroside F6 in Inhibiting Breast Cancer Cell. Journal of Food and Nutrition Research. 2024; 12(10):446-460. doi: 10.12691/jfnr-12-10-7

Abstract

Many reports universal followed on common saponins of ginseng research field, few about functional identification of rare saponins. This study mainly researched new types of processed “one Steaming and one Sun-drying” Black Panax quinquefolius rare saponins (BPQRS) which extracted from Black Panax quinquefolius and its mechanism of inhibiting breast cancer cells. In our work, the extracts of Black Panax quinquefolius total saponins were analyzed used UPLC-Q/TOF-MS and 33 components were identified included 11 rare saponins. To further explored the inhibitory effect of BPQRS on disease pathways, network pharmacology and molecular docking simulation were carried out among 11 rare saponins, the rare saponins majoroside F6 and ginsenoside Rk1 expressed high correlation on inhibition pathway of breast cancer. Lots of reported discussed the function of ginsenoside Rk1, finally chose majoroside F6 of BPQRS to separated and purified by method of HSCCC. For identifying the function of majoroside F6, breast cancer cell MCF7 in vitro experiment confirmed that majoroside F6 exerted an significantly inhibiting cell proliferation by used MTT, flow cytometry and ELISA methods which upregulated caspase-3, Bax, inhibiting PI3K, AKT and Bcl-2 expression. This study laid a theoretical basis for developing and utilizing the medicinal value of BPQ.

Keywords:
One Steaming and one Sun-drying Black Panax quinquefolius Inhibit breast cancer cell Majoroside F6 Network Pharmacology UPLC-Q/TOF-MS

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Zhang, X., Zhang, G., Tian, L., & Huang, L. (2023). Ecological regulation network of quality in American Ginseng: Insights from macroscopic-mesoscopic-microscopic perspectives. Industrial Crops and Products, 206, 117617.
 
[2]  Huang, L., Li, H. J., & Wu, Y. C. (2023). Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: a comprehensive review. Food Chemistry, 407, 134714.
 
[3]  Gum, S. I., Jo, S. J., Ahn, S. H., Kim, S. G., Kim, J. T., Shin, H. M., & Cho, M. K. (2007). The potent protective effect of wild ginseng (Panax ginseng CA Meyer) against benzo [α] pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs. Journal of ethnopharmacology, 112 (3), 568-576.
 
[4]  Peng, D., Wang, H., Qu, C., Xie, L., Wicks, S. M., & Xie, J. (2012). Ginsenoside Re: its chemistry, metabolism and pharmacokinetics. Chinese Medicine, 7, 1-6.
 
[5]  Fan, W., Fan, L., Wang, Z., Mei, Y., Liu, L., Li, L.,... & Wang, Z. (2024). Rare ginsenosides: a unique perspective of ginseng research. Journal of Advanced Research.
 
[6]  Shi, W., Wang, Y., Li, J., Zhang, H., & Ding, L. (2007). Investigation of ginsenosides in different parts and ages of Panax ginseng. Food chemistry, 102(3), 664-668.
 
[7]  Fuzzati, N. (2004). Analysis methods of ginsenosides. Journal of Chromatography B, 812(1-2), 119-133.
 
[8]  Mallol, A., Cusidó, R. M., Palazón, J., Bonfill, M., Morales, C., & Piñol, M. T. (2001). Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry, 57(3), 365-371.
 
[9]  J. Ru, P. Li, J. Wang, W. Zhou, B. Li, C. Huang, P. Li, Z. Guo, W. Tao, Y. Yang, et al., TCMSP: a database of systems pharmacology for drug discovery from herbal medicines, J. Chem. 6 (2014) 13.
 
[10]  A. Hamosh, J.S. Amberger, C. Bocchini, A.F. Scott, S.A. Rasmussen, Online Mendelian inheritance in man (OMIM®): victor McKusick’s magnum opus, Am. J. Med. Genet. A 185 (2021) 3259–3265.
 
[11]  Pi˜nero, J.;Saüch, J.;Sanz, F.Furlong, L.I. The DisGeNET cytoscape app: exploring and visualizing disease genomics data. Comput. Struct. Biotechnol. J. 2021, 19, 2960–2967.
 
[12]  P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res. 13 (2003) 2498–2504.
 
[13]  Gene Ontology Consortium: going forward, Nucleic Acids Res. 43 (2015) D1049–D1056.
 
[14]  M. Kanehisa, S. Goto, KEGG: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res. 28 (2000) 27–30.
 
[15]  B.T. Sherman, M. Hao, J. Qiu, X. Jiao, M.W. Baseler, H.C. Lane, T. Imamichi, W. Chang, DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update), Nucleic Acids Res. 50 (2022) W216–w221.
 
[16]  O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010) 455–461.
 
[17]  Deng, W., Wang, Y., Liu, Z., Cheng, H., & Xue, Y. (2014). HemI: A toolkit for illustrating heatmaps. e111988 PloS one, 9 (11), e111988.
 
[18]  Wang D Q, Feng B S, Wang X B, et al. Further study on dammarane saponins of leaves of Panax japonicus var. major collected in the Qinling Mountains, China [J]. Yaoxue Xuebao, 1989, 24(8): 593-599.
 
[19]  Lin, H., Zhu, H., Tan, J., Wang, C., Dong, Q., Wu, F.,... & Liu, J. (2019). Comprehensive investigation on Metabolites of wild-simulated American ginseng root based on ultra-high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. Journal of Agricultural and Food Chemistry, 67 (20), 5801-5819.
 
[20]  Andrews, N. W., & Corrotte, M. (2018). Plasma membrane repair. Current Biology, 28(8), R392-R397.
 
[21]  Fee, J. R., Knapp, D. J., Sparta, D. R., Breese, G. R., Picker, M. J., & Thiele, T. E. (2006). Involvement of protein kinase A in ethanol-induced locomotor activity and sensitization. Neuroscience, 140(1), 21-31.
 
[22]  Wilson, I. D., Plumb, R., Granger, J., Major, H., Williams, R., & Lenz, E. M. (2005). HPLC-MS-based methods for the study of metabonomics. Journal of Chromatography B, 817(1), 67-76.
 
[23]  Simirgiotis, M. J., Schmeda-Hirschmann, G., Bórquez, J., & Kennelly, E. J. (2013). The Passiflora tripartita (Banana Passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC–DAD–ESI/MS/MS. Molecules, 18(2), 1672-1692.
 
[24]  Constante, C. K., Rodríguez, J., Sonnenholzner, S., & Domínguez-Borbor, C. (2022). Adaptation of the methyl thiazole tetrazolium (MTT) reduction assay to measure cell viability in Vibrio spp. Aquaculture, 560, 738568.
 
[25]  Yu, Q., Zhu, K., Ding, Y., Han, R., & Cheng, D. (2022). Comparative study of aluminum (Al) speciation on apoptosis-promoting process in PC12 cells: Correlations between morphological characteristics and mitochondrial kinetic disorder. Journal of Inorganic Biochemistry, 232, 111835.
 
[26]  Kumar, R., Saneja, A., & Panda, A. K. (2021). An annexin V-FITC—propidium iodide-based method for detecting apoptosis in a non-small cell lung cancer cell line. Lung Cancer: Methods and Protocols, 213-223.
 
[27]  Park, J., An, G., Park, H., Hong, T., Lim, W., & Song, G. (2023). Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. Environment International, 176, 107973.
 
[28]  Niu, X., Li, S., Wei, F., Huang, J., Wu, G., Xu, L.,... & Wang, S. (2014). Apogossypolone induces autophagy and apoptosis in breast cancer MCF-7 cells in vitro and in vivo. Breast Cancer, 21, 223-230.
 
[29]  Yiming, Z., Zhaoyi, L., Jing, L., Jinliang, W., Zhiqiang, S., Guangliang, S., & Shu, L. (2021). Cadmium induces the thymus apoptosis of pigs through ROS-dependent PTEN/PI3K/AKT signaling pathway. Environmental Science and Pollution Research, 28, 39982-39992.
 
[30]  K. Beyfuss, D.A. Hood, A systematic review of p53 regulation of oxidative stress in skeletal muscle, Redox Rep. 23 (2018) 100–117.
 
[31]  F. Edlich, BCL-2 proteins and apoptosis: recent insights and unknowns, Biochem.Biophys. Res. Commun. 500 (2018) 26–34,
 
[32]  Guo, Y., Wu, Y., Huang, T., Huang, D., Zeng, Q., Wang, Z.,... & Liu, Q. (2024). Licorice flavonoid ameliorates ethanol-induced gastric ulcer in rats by suppressing apoptosis via PI3K/AKT signaling pathway. Journal of Ethnopharmacology, 325, 117739.