[1] | Walbot, V., 10 Reasons to be Tantalized by the B73 Maize Genome. PLoS Genet. 2009, 5, e1000723. |
|
[2] | June, C., Page, S.E.E.L., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., et al. The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science 2009, 1912, 1112-1115. |
|
[3] | Tenaillon, M.I., Charcosset, A. A European perspective on maize history. Comptes Rendus-Biol. 2011, 334, 221-228. |
|
[4] | Zeng, R.; Li, Z., Shi, Y., Fu, D., Yin, P., Cheng, J., Jiang, C., Yang, S. Natural variation in a type A response regulator confers maize chilling tolerance. Nat Commun. 2021, 12, 4713. |
|
[5] | Sowi nski, P., Rudzi´nska-Langwald, A., Adamczyk, J., Kubica, I., Fronk, J. Recovery of maize seedling growth, development and photosynthetic efficiency after initial growth at low temperature. J Plant Physiol. 2005, 162, 67-80. |
|
[6] | Grzybowski, M., Adamczyk, J., Jo nczyk, M., Sobkowiak, A., Szczepanik, J., Frankiewicz, K., Fronk, J., Sowi´ nski, P. Increased photosensitivity at early growth as a possible mechanism of maize adaptation to cold springs. J Exp Botany 2019, 70, 2887-2904. |
|
[7] | Zhang, H., Zhang, J., Xu, Q., Wang, D., Di, H., Huang, J., Yang, X., Wang, Z., Zhang, L., Dong, L., et al. Identification of candidate tolerance genes to low-temperature during maize germination by GWAS and RNA-seq approaches. BMC Plant Biol. 2021, 20, 333. |
|
[8] | Yang J., Li J., Lu J .Synergistic protective effect of astragaloside IV-tetramethylpyrazine against cerebral ischemic-reperfusion injury induced by transient focal ischemia.J Ethnopharmacol. 2012, 140(1):64, 72. |
|
[9] | Foyer, C.H., Vanacker, H., Gomez, L.D., Harbinson, J. Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review. Plant Physiol. Biochem. 2002, 40, 659-668. |
|
[10] | Kołodziejczyk, I., Ka´zmierczak, A., Posmyk, M.M. Melatonin application modifies antioxidant defense and induces endoreplication in maize seeds exposed to chilling stress. Int. J. Mol. Sci. 2021, 22, 8628. |
|
[11] | Greaves, J.A. Improving suboptimal temperature tolerance in maize the search for variation. J. Exp. Botany 1996, 47, 307-323. |
|
[12] | Guo, X., Liu, D., Chong, K. Cold signaling in plants: Insights into mechanisms and regulation. J. Integr. Plant Biol. 2018, 60, 745-756. |
|
[13] | Crèvecoeur, M., Deltour, R., Bronchart, R. Effects of subminimal temperature on physiology and ultrastructure of Zea mays embryo during germination. Can. J. Botany 1983, 61, 1117-1125. |
|
[14] | Bafana, A., Dutt, S., Kumar, S., Ahuja, P.S. Superoxide dismutase: An industrial perspective. Crit. Rev. Biotechnol. 2011, 31, 65-76. |
|
[15] | Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490-498. |
|
[16] | Filiz, E., Tombulo glu, H. Genome-wide distribution of superoxide dismutase (SOD) gene families in Sorghum bicolor. Turk. J. Biology 2015, 39, 49-59. |
|
[17] | Denslow, S.A., Rueschhoff, E.E., Daub, M.E. Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress. Plant Physiol. Biochem. 2007, 45, 152-161. |
|
[18] | Browning, K.S., Bailey-Serres, J. Mechanism of Cytoplasmic mRNA Translation. Arab. Book 2015, 13, 1-39. |
|
[19] | Sanchez, C.G., Teixeira, F.K., Czech, B., Preall, J.B., Zamparini, A.L., Seifert, J.R.K., Malone, C.D., Hannon, G.J., Lehmann, R. Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell 2016, 18, 276-290. |
|
[20] | Sinturel, F., Gerber, A., Mauvoisin, D., Wang, J., Gatfield, D., Stubblefield, J.J., Green, C.B., Gachon, F., Schibler, U. Diurnal Oscillations in Liver Mass and Cell Size Accompany Ribosome Assembly Cycles. Cell 2017, 169, 651-663. |
|
[21] | Ohbayashi, I., Konishi, M., Ebine, K., Sugiyama, M. Genetic identification of Arabidopsis RID2 as an essential factor involved in pre-rRNA processing. Plant J. 2011, 67, 49-60. |
|
[22] | Al Refaii, A., Alix, J.H. Ribosome biogenesis is temperature-dependent and delayed in Escherichia coli lacking the chaperones DnaK or DnaJ. Mol. Microbiol. 2009, 71, 748-762. |
|
[23] | Hang, R., Wang, Z., Deng, X., Liu, C., Yan, B., Yang, C., Song, X., Mo, B., Cao, X. Ribosomal RNA Biogenesis and Its Response to Chilling Stress in Oryza sativa. Plant Physiol. 2018, 177, 381-397. |
|
[24] | Yu, T., Zhang, J., Cao, J., Cai, Q., Li, X., Sun, Y., Li, S., Li, Y., Hu, G., Cao, S., et al. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels. Genomics 2021, 113, 782-794. |
|
[25] | Meng, A., Wen, D., Zhang, C. Maize Seed Germination under Low-Temperature Stress Impacts Seedling Growth under Normal Temperature by Modulating Photosynthesis and Antioxidant Metabolism. Front. Plant Sci. 2022, 13, 843033. |
|
[26] | Gechev, T., Willekens, H., Van Montagu, M., Inzé, D., Van Camp, W., Toneva, V., Minkov, I. Different responses of tobacco antioxidant enzymes to light and chilling stress. J. Plant Physiol. 2003, 160, 509-515. |
|
[27] | Li, Y., Wang, X., Ban, Q., Zhu, X., Jiang, C., Wei, C., Bennetzen, J.L. Comparative transcriptomic analysis reveals gene expression associated with cold adaptation in the tea plant Camellia sinensis. BMC Genom. 2019, 20, 624. |
|
[28] | Møller, I.M., Jensen, P.E., Hansson, A. Oxidative modifications to cellular components in plants. Ann. Rev. Plant Biol. 2007, 58, 459-481. |
|