[1] | WHO, Obesity and overweight, 2020 https://www.who.int/news- room/fact-sheets/detail/obesity-and-overweight. |
|
[2] | Tzeng, T.F., Lu, H.J., Liou, S.S., Chang, C.J., Liu, I.M., “Reduction of lipid accumulation in white adipose tissues by Cassia tora (Leguminosae) seed extract is associated with AMPK activation”, Food Chem, 136, 1086-1094, 2013. |
|
[3] | Chyau, C.C., Chu, C.C., Chen, S.Y., Duh, P.D., “The inhibitory effects of djulis (Chenopodium formosanum) and its bioactive compounds on adipogenesis in 3T3-L1 adipocytes”, Molecules, 23(7), 1780, 2018. |
|
[4] | Chen, S.H., Chu, C.C., Lin, Y.C., Duh, P.D., “Djulis (Chenopodium formosanum) and its bioactive compounds for management of hyperlipidemia and hyperglycemia in high-fat diet-fed mice”, J Food Nutr Res, 7, 452-457, 2019. |
|
[5] | Kowalska, K., Olejnik, A., Rychlik, J., Graje, W., “Cranberries (Oxycoccus quadripetalus) inhibit adipogenesisand lipogenesis in 3T3-L1 cells”, Food Chem, 148, 246-252, 2014. |
|
[6] | Xu, J.G., Hu, Q.P., Liu, Y., “Antioxidant and DNA-protective activities of chlorogenic acid isomers”, J Agric. Food Chem, 60, 11625-11630, 2012. |
|
[7] | Limwachiranon, J., Huang, H., Li, L., Lin, X., Zou, L., Liu, J., Zou, Y., Aalim, H., Duan, Z., Luo, Z., “Enhancing stability and bioaccessibility of chlorogenic acid using complexation with amylopectin: A comprehensive evaluation of complex formation, properties, and characteristics”, Food Chem, 311, 125879, 2020. |
|
[8] | Hsu, C.L., Yen G.C., “Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes”, J Agric Food Chem, 55(21), 8404-8410, 2007. |
|
[9] | Tzeng, T.F., Liu, I.M., “6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells”, Phytomedicine, 20(6), 481-487, 2013. |
|
[10] | Noh, J.R., Kim, Y.H., Hwang, J.H., Gang, G.T., Yeo, S.H., Kim, K.S., Oh, W.K., Ly, S.Y., Lee, I.K., Lee, C.H.,” Scoparone inhibits adipocyte differentiation through down-regulation of peroxisome proliferators-activated receptor γ in 3T3-L1 preadipocytes”, Food Chem, 141(2),723-730. 2013. |
|
[11] | Zhao, Y., Li, X., Wang, F., Zhao, X., Gao, Y., Zhao, C., He, L., Zuotong Li, Z., Xu, J., “Glycerol-3-phosphate dehydrogenase (GPDH) gene family in Zea mays L.: Identification, subcellular localization, and transcriptional responses to abiotic stresses”, PLOS ONE. 2018. |
|
[12] | Tan, X.C., Chua, K.H., Ram, M.R., Kuppusamy, U.R., “Monoterpenes: Novel insights into their biological effects and roles on glucose uptake and lipid metabolism in 3T3-L1 adipocytes”, Food Chem, 196, 242-250, 2016. |
|
[13] | Chen, Y.Y., Lee, M.H., Hsu, C.C., Wei, C.L., Tsai, Y.C. “Methyl cinnamate inhibits adipocyte differentiation via activation of the CaMKK2–AMPK pathway in 3T3-L1 preadipocytes”, J Agric Food Chem, 60, 4, 955-963, 2012. |
|
[14] | Fujimori, K.; Shibano, M., “Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPalpha-activated GLUT4-mediated glucose uptake in 3T3-L1 cells”, J Agric Food Chem, 61, 5139-5147, 2013. |
|
[15] | Kowalska, K., Olejnik, A., Rychlik, J., Grajek, W., “Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells”, Food Chem, 148, 246-252, 2016. |
|
[16] | Ogawa, T., Tabata, H., Katsube, T., Ohta, Y., Shiwaku, K., “Suppressive effect of hot water extract of wasabi (Wasabia japonica Matsum.) leaves on the differentiation of 3T3-L1 preadipocytes”, Food Chem, 118, 239-244, 2010. |
|
[17] | Domínguez-Avila, J.A., Alvarez-Parrilla, E., López-Díaz, J.A., Maldonado-Mendoza, I.E., Gómez-García, M.D.C., de la Rosa, L.A., ”The pecan nut (Carya illinoinensis) and its oil and polyphenolic fractions differentially modulate lipid metabolism and the antioxidant enzyme activities in rats fed high-fat diets”, Food Chem, 168, 529-537, 2015. |
|
[18] | Zhang, Y., Liu, X., Han, L., Gao, X., Wang, T., “Regulation of lipid and glucose homeostasis by mango tree leaf extract is mediated by AMPK and PI3K/AKT signaling pathways”, Food Chem, 141, 2896-2905, 2013. |
|