American Journal of Food and Nutrition
ISSN (Print): 2374-1155 ISSN (Online): 2374-1163 Website: https://www.sciepub.com/journal/ajfn Editor-in-chief: Mihalis Panagiotidis
Open Access
Journal Browser
Go
American Journal of Food and Nutrition. 2023, 11(3), 71-88
DOI: 10.12691/ajfn-11-3-3
Open AccessArticle

Biological Activities of Ashwagandha (Withania somnifera L.) Roots and their Effect on the Neurological Complications of Obesity in Rats

Yousif A. Elhassaneen1, , Reem A. Boraey1 and Amal Z. Nasef1

1Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University Shebin El-Kom, Egypt

Pub. Date: September 27, 2023

Cite this paper:
Yousif A. Elhassaneen, Reem A. Boraey and Amal Z. Nasef. Biological Activities of Ashwagandha (Withania somnifera L.) Roots and their Effect on the Neurological Complications of Obesity in Rats. American Journal of Food and Nutrition. 2023; 11(3):71-88. doi: 10.12691/ajfn-11-3-3

Abstract

The current study aims to see if eating Ashwagandha roots can help with neurological issues in an obese rat model. This study will also look at the biochemical roles of Ashwagandha roots. Alkaloids were shown to be the most prevalent bioactive chemicals in Ashwagandha roots, followed by triterpenoids, carotene, flavonoids, tannins, total phenolics, and saponins. Furthermore, the hydro-ethanolic extract of Ashwagandha roots demonstrated a wide range of biological properties, including antioxidant and free radical scavenging activity, suppression of low-density lipoprotein, and antibacterial activity. Normal rats fed diet-induced obesity (DIO) (model control) had higher body weight (BW), feed intake (FI), and feed efficiency ratio (FER) than the control group. At the end of the trial (8 weeks), rats in the normal group had BW, FI, and PER values of 0.91%, 13.10 g/day/rat, and 0.076, respectively, whereas these values had grown by rates of 54.95, 23.82, and 21.05% in the model control group. Intervention with Ashwagandha roots (2, 4, 6, and 8 g/100g diet) in feeding rats for 8 weeks resulted in a significantly (p0.05) lower BWG, FI, and FER, improved serum lipid profile parameters, decreased liver functions, improved neurological disorders (dopamine and serotonin content and acetylcholine esterase activity), and positively manipulated obesity-related histopathological changes in brain and adipose tissues. These data support the use of Ashwagandha roots for obesity treatment and prevention. Furthermore, the findings suggest the benefits of dietary changes, such as Ashwagandha root supplementation, in reducing the complications linked with obesity, such as neurological problems.

Keywords:
body weight organs weight liver functions serum lipid profile acetylcholine esterase dopamine serotonin

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 11

References:

[1]  OECD, Organisation for Economic Co-operation and Development member countries (2017). Obesity Update 2017. www.oecd.org/health/obesity-update.htm.
 
[2]  Felisbino-Mendes, M., Cousin, E., Malta, D., Ísis E., Antonio L., Bruce, B., Maria, I., Diego, A., Scott, G., Ashkan, A. & Gustavo, V. (2020). The burden of non-communicable diseases attributable to high BMI in Brazil, 1990–2017: findings from the Global Burden of Disease Study. Popul Health Metrics 18 (Suppl 1), 18: 1-13.
 
[3]  Mehrzad, R. (2020). The Global Impact of Obesity. In: Mehrzad R, editor. Obesity. Amsterdam: Elsevier. pp. 55-72.
 
[4]  Mokdad, A. H. (2003). Prevalence of obesity, diabetes, and obesity-related health risk factors, JAMA, 289, 76–79.
 
[5]  Gukovsky, I., Li, N., Todoric, J., Gukovskaya, A. & Karin, M. (2013). Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology, 144: 1199-1209.
 
[6]  Alzahrani, B., Iseli, T. J. & Hebbard, L. W. (2014). Non-viral causes of liver cancer: does obesity led inflammation play a role? Cancer Lett, 345: 223-229.
 
[7]  Loef, M. & Walach, H. (2013). Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the united states and china. Obesity. 21(1): E51–55.
 
[8]  Hugo, J. O., David, C., Ernestina, H. & Gerardo, B. (2016).The Role of Dopamine and Its Dysfunction as a Consequence of Oxidative Stress. Oxidative Medicine and Cellular Longevity, volume 2016, Article ID 9730467: 1-13.
 
[9]  Jandacek, R. J. & Woods, S. C. (2004). Pharmaceutical approaches to the treatment of obesity. Drug Discov Today, 9: 874-80.
 
[10]  Elhassaneen, Y., Hadeer M. Gadallah & Amal Z. Nasef. (2023-a). Brown Algae (Sargassum Subrepandum) from Egypt Exhibited High Nutritional Composition and Bioactive Constituent's Content: A Biological Application on Obesity and its Complications in Experimental Rats. Journal of Agriculture and Crops, 9 (4): 441-461.
 
[11]  Elhassaneen, Y., Seham A. Khader. & Mohammed A. El-aslowty. (2023-b). Potential Ameliorative Effects of Graviola (Annona muricata L.) Fruits on Carbon-tetrachloride Induced Hepatic Injury in Rats: Antioxidant, Apoptotic, Anti-inflammatory Markers, and Histopathological Studies. International Journal of Healthcare and Medical Sciences, 9(2): 17-31
 
[12]  Anonymous. (2007).The Unani Pharmacopoeia of India. Part I, Vol. I, Depat. of AYUSH, Ministry of Health & Family Welfare, Govt. of India, New Delhi 7-8.
 
[13]  Chopra, R. N., Nayar, S. L. & Chopra, I. C.(1980). Glossary of Indian Medicinal Plants. Council of Scientific & Industrial Research, New Delhi, pp. 191-258.
 
[14]  Nadkarni, A. K. & Nadkarni, A. K. (1982). Indian material medica, popular prakashan pvt ltd. Bombay India, 1, 1199.‏
 
[15]  Anonymous. The Wealth of India. Vol. X (Sp-W), Publications and Information Directorate, Council of Scientific and Industrial Research (CSIR), New Delhi (1982) 580-585.
 
[16]  Behl, P. N., Arora, R. B., Srivastava. & Malhotra, S. C. (1993).Herbs Useful in Dermatological Therapy. CBS Publishers and Distributors,141- 142.
 
[17]  Sivarajan, V. V & Balachandran, I.(1994). Ayurvedic Drugs and their Plant Sources. Oxford and IBH Publishing Company Pvt. Ltd, p. 294.
 
[18]  Naveed, M. A., Kim, J., Ansari, M. A., Kim, I., Massoud, Y., Kim, J. & Rho, J. (2022). Single-step fabricable flexible metadisplays for sensitive chemical/biomedical packaging security and beyond. ACS Applied Materials & Interfaces, 14(27): 31194-31202.‏
 
[19]  Pal, A. J., Bhushan, B. H., Khanum, F. A., Govil, J. N., Kaushik, G. & Rai, N.(2012) Therapeutic uses of Withania somnifera (Ashwagandha). Recent progress in medicinal plants (RPMP). 34: 97-118.
 
[20]  Imtiyaz, S., Aslam, M., Tariq, M. & Chaudhary, S. S. (2013).Withania somnifera: A potent unani aphrodisiac drug. Int Res J Pharmaceut Appl Sci. 3(4):59-63.
 
[21]  Patil, D., Gautam, M., Jadhav, U., Mishra, S., Karupothula, S., Gairola, S. & Patwardhan, B. (2010). Physicochemical stability and biological activity of Withania somnifera extract under real-time and accelerated storage conditions. Planta medica, 76(05): 481-488.‏
 
[22]  Kulkarni, S. K., Akula, K. K. & Dhir, A. (2008). Effect of Withania somnifera Dunal root extract against pentylenetetrazol seizure threshold in mice: Possible involvement of GABAergic system. Indian Journal of Experimental Biology. 46(6): 465-469.
 
[23]  Elhassaneen, Y. & Salem, A. (2014). Biochemical/Nutritional Studies on some Obesity Cases in Egypt. Journal of Home Economics, 24(1): 121-137.
 
[24]  Gharib, M., Radwan, H. & Elhassaneen, Y. (2022). Nutrients and Nutraceuticals Content and In Vitro Biological Activities of Reishi Mushroom (Ganoderma lucidum) Fruiting Bodies. Alexandria Science Exchange Journal, 43, (2): 301-316.
 
[25]  Abd Elalal, N., Elsemelawy, S. & Elhassaneen, Y. (2022). "Potential Effects of Wild Milk Thistle (Silybum marianum L.) Seed Extract Intervention on Oxidative Stress Induced by Busulfan Drug in Different Organs of Rats". International Journal of Healthcare and Medical Sciences, 8(3): 19-34.
 
[26]  Singleton, V. L. & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic.16: 144-158.
 
[27]  Wolfe, K., Wu, X. & Liu, R. H. (2003). Antioxidant activity of apple peels. J. Agric. Food Chem. 51: 609-614.
 
[28]  Litchenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-383.
 
[29]  Zhisen, J., Mengcheng, T. & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals”.Food Chem, 64: 555–559.
 
[30]  Van-Burden, T.P. & Robinson W.C. (1981). Fonnation of complexes between protein and tannic acid. Journal of Agricultural and Food Chemistry: 1: 77.
 
[31]  Harborn, J. B. (1973). Phytochemical Methods: A guide to modern techniques qf plant analysis. Published by Chapman & Hall, an imprint of Thornson Science, London SE18HN, UK
 
[32]  Fenwick, D. E. & OakenfuIl, D. (1983). Saponin content offood plants and some prepared foods. Journal of the Science of Food and Agriculture, 34: 186-191.
 
[33]  Schneider, P., Hosseiny, S. S., Szczotka, M., Jordan, V. & Schlitter, K. (2009). Rapid solubility determination of the triterpenes oleanolic acid and ursolic acid by UV-spectroscopy in different solvents. Phytochemistry Letters, 2(2): 85-87.
 
[34]  Marco, G. J. (1968). A rapid method for evaluation of antioxidants. J. Am. Oil Chem. Soc. 45: 594-598.
 
[35]  Desmarchelier, C., Bermudez, M. J. N., Coussio, J., Ciccia, G. & Boveris, A. (1997). Antioxidant and prooxidant activities in aqueous extract of Argentine plants. Int. J. Pharmacogn. 35:116-120.
 
[36]  Princen, H. M. G., Van Poppel, G., Vogelezang, C., Buytenhek, R. & Kok, F. J. (1992). Supplementation with vitamin E but not bcarotene in vivo protects low-density lipoprotein from lipid peroxidation in vitro. Arteriosclerosis and Thrombosis, 12: 554–562.
 
[37]  Spooner, F.D. & G. Sykes. (1979). Laboratory assessment of antibacterial activity. In: (J.R. Norris and D.W. Ribbons, eds) Methods in Microbiology 7B.Academic Press, London. 216–217.
 
[38]  AIN. American Institute of Nutrition. (1993): Purified diet for laboratory Rodent, Final report. J. Nutrition. 123: 1939-1951.
 
[39]  Reeves, P., Nielsen, F. & Fahey, G. (1993). "AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet". Journal of Nutrition, 123(11): 1939-1951.
 
[40]  NRC, National Research Council (1996): Guide for the Care and Use of Laboratory Animals Washington: National Academy Press. Obtained from hypertensive-diabetes rats. Fundam Clin Pharmacol, 10: 329–336.
 
[41]  Elhassaneen, Y. A., Amal Z. Nasef., Rawan S. Arafa. & Asmaa I. Bayomi (2023-c). Bioactive compounds and antioxidant activities of milk thistle (Silybum marianum) extract and their potential roles in the prevention of diet-induced obesity complications. American Journal of Food Science and Technology, 11(3): 70-85.
 
[42]  Chapman, D. G., Castilla, R. & Champbell, J. A. (1959): Evaluation of protein in food. I.A Method for the determination of protein efficiency ratio. Can. J. Biochemistry on Liver Disorder Initiation by carbon Tetra Chloride. M. Sc Thesis, Faculty of Home Physiology, 37: 679-686.
 
[43]  Drury, R.A. & Wallington, E.A. (1980): Carleton’s Histological Technique. 5th Edition, Oxford University Press, New York.
 
[44]  Yound, D. S. (1975). Determination of GOT. Clin. Chem. 22 (5): 21-27.
 
[45]  Tietz, N. W. (1976): Fundamentals of Clinical Chemistry. Philadelphia. B.W. Standers, 243.
 
[46]  Fossati, P. & Prenape, L. (1982): Serum triglycerides deter-mined colorimeterically with enzyme that produce hydrogen peroxide. Clin. Chem. 28: 2077-2080.
 
[47]  Richmond, W. (1973). "Preparation and Properties of a Cholesterol Oxidase from Nocardia sp. and its Application to the Enzy-matic Assay of Total Cholesterol in Serum. Clinical Chemistry, 19: 1350-1356.
 
[48]  Lopes-Virella, M. F., Stone, S., Ellis, S. & Collwell, J. A. (1977). Cholesterol determination in high-density lipoproteins separated by three different methods. Clin. Chem. 23(5): 882-886.
 
[49]  Fniedewald, W. T., Leve, R. L. & Fredrickson, D. S. (1972): Estimation of concentration of low density lipo protein separated by three different. Clin.Chem, 18: 499-502.
 
[50]  Mahood, A. M. & Hamzah, M. J. (2010). A high sensitive colorimetric assay for the determination of dopamine hydrochloride in pharmaceutical preparations Using charge transfer complex reaction. National Journal of Chemistry, 37, 60-65.
 
[51]  Mitra, C. & Guha S.R. (1989). A colorimetric method for assay of serotonin deamination by monoamine oxidase. Indian J Exp Biol. 27(3): 294-6.
 
[52]  Gowenlock, A. H. (1988). Varley’s practical clinical biochemistry. 6th ed., Heinemann Medical Books, London, UK.
 
[53]  Carleton, H. (1978). Histological Techniques, 4th Ed., London, Oxford, New York, Tornoto.
 
[54]  Munir, N., Mahmood, Z., Shahid, M., Afzal, M. N., Jahangir, M., Ali Shah, S. M. & Yousaf, F. (2022). Withania somnifera chemical constituents’ in vitro antioxidant potential and their response on spermatozoa parameters. Dose-Response, 20(1), 15593258221074936.‏
 
[55]  Gulati, S., Madan, V. K., JANGRA, S. S. & Yadav, I. S. (2017). Determination of total phenolics, total flavonoids and evaluation of DPPH free 12 Dose-Response: An International Journal radical scavenging activity of Ashwagandha (Withania somnifera L.) roots. Asian J Chem., 29(8): 1660-1664.
 
[56]  Saxena, M., Faridi, U. & Srivastava, S. K, (2007). A cytotoxic and hepatoprotective agent from Withania somnifera and biological evaluation of its ester derivatives. Nat Prod Commun. 2(7): 775-778.
 
[57]  Elhassaneen, y., El-Waseef, S., Fathy, N. and Sayed Ahmed, S. (2016-a): Bioactive compounds and antioxidant potential of food industry by-products in Egypt. American Journal of Food and Nutrition, 4 (1): 1-7.
 
[58]  Elhassaneen, Y. A., Safaa El-Waseef., Naglaa Fathy & Sarah Sayed Ahmed. (2016-c). Bioactive Compounds and Antioxidant Potential of Food Industry By-products in Egypt. American Journal of Food and Nutrition, 4 (1): 1-7.
 
[59]  Elhassaneen, Y., Sherif Mekawy., Seham Khder. & Mona Salman.(2019). Effect of Some Plant Parts Powder on Obesity Complications of Obese Rats. Journal of Home Economics, 29 (1): 83-106.
 
[60]  El-Gamal, N. T. (2020). Studies on the antioxidant activities of brown algae and their effects on obesity and osteoporosis in rats". Ph.D. Thesis in Nutrition and Food Science, Faculty of Home Economics, Minoufiya University, Shebin El-Kom, Egypt.
 
[61]  Gad Alla, H. M. (2023). Phytochemical composition and biological activities of brown algae: applications on obesity complications in experimental rats. MSc. Thesis in Nutrition and Food Science, Faculty of Home Economics, Minoufiya University, Shebin El-Kom, Egypt.
 
[62]  Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines, 5(3): 93.
 
[63]  Leake, J. R. (2001). Is diversity of ectomycorrhizal fungi important for ecosystem function? New Phytologist. 152: 1-3.
 
[64]  Wroniak, M., M. Kwiatkowska. & K. Krygier. (2006). Characteristic of selected cold pressed oils. Food Sci. Technol. Qual. 2: 46-58.
 
[65]  Okwu, D. E. & Okwu, M. E. (2004). Chemical composition of Spondias mombin Linn plant parts. J Sustain Agric Environ. 6(2): 140-147.
 
[66]  Bishayee, A., Ahmed, S., Brankov, N. & Perloff, M. (2011). Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci, 16: 980–996.
 
[67]  Aqib, A.I., Atta, K., Muneer, A., Arslan, M., Shafeeq, M. & Rahim, K. (2023). Saponin and its derivatives (glycyrrhizin) and SARS-CoV-2. Application of Natural Products in SARS-CoV-2, 25-46.
 
[68]  Ismail, A., Marjan, Z. M. & Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87(4): 581–586.
 
[69]  Barros, L., Baptista, P., Correia, D.M., Morais, J. S. & Ferreira, I.C.F.R. (2007). Effects of conservation treatment and cooking on the chemical composition and antioxidant activity of Portuguese wild edible mushrooms. J. Agric. Food Chem., 55(12): 4781-4788.
 
[70]  Abd Elalal, N., El Seedy, G. & Elhassaneen, Y. (2021). Chemical Composition, Nutritional Value, Bioactive Compounds Content and Biological Activities of the Brown Alga (Sargassum Subrepandum) Collected from the Mediterranean Sea, Egypt. Alexandria Science Exchange Journal, 42, (4): 893-906.
 
[71]  Elhassaneen, Y., Hanaa Badran., Abeer Abd EL-Rahman. & Naglaa Badawy. (2021). Potential Effect of Milk Thistle on Liver Disorders Induced by Carbon Tetrachloride. Journal of Home Economics, 31 (1): 83-93.
 
[72]  Elhassaneen, Y., Elkamisy, A. Sayed, R. & Hamza, R. (2021-b). The bioactive compounds content and antioxidant activities of some plant parts formulae distributed in Egyptian local markets. Port Saied Specific Research Journal (PSSRJ), 14 (2): 585-608.
 
[73]  El-Nassag, D., Ghamry, H. & Elhassaneen, Y. (2019). Stevia (Stevia rebaudiana) leaves: chemical composition, bioactive compounds, antioxidant activities, antihyperglycemic and antiatherogenic effects. Journal of Studies and Searches of Specific Education, 5 (1): 157-180
 
[74]  Zheng, X., Liu, B., Li, L. & Zhu, X. (2011). Microwave-assisted extraction and antioxidant activity of total phenolic compounds from pomegranate peel. J Med Plants Res., 5(6): 1004-1011.
 
[75]  Jin, G., Ying, F., 1Zhao, H., Xian, L., & Hong, Z. (2017). Correlations between Antioxidant Activity and Alkaloids and Phenols of Maca (Lepidium meyenii). Journal of Food Quality.
 
[76]  Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S. & Robards, K. (2002). Methods for testing antioxidant activity. Analyst, 127: 183-198.
 
[77]  Aaby, K., Hvattum, E. & Skrede, G. (2004). Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: relationship to antioxidant activity. J. Agric. Food Chem. 52(15): 4595-4603.
 
[78]  Laura, A., Emilio, A. & Gustavo, A. (2010). Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability. 1st Ed., Blackwell Publishing, New Delhi, India.
 
[79]  Aly, A., Elbassyouny, G. and Elhassaneen, Y. (2017). Studies on the antioxidant properties of vegetables processing by-products extract and their roles in the alleviation of health complications caused by diabetes in rats. Proceeding of the 1st International Conference of the Faculty of Specific Education, Kafrelsheikh University, “Specific Sciences, their Developmental Role and Challenges of Labor Market” PP 1-24, 24-27 October, 2017, Sharm ElSheikh, Egypt.
 
[80]  Fayez, S. A. (2021). "Effect of brown algae on obesity and its complications induced by high fat diets in rats". PhD Thesis in Nutrition and Food Science, Faculty of Specific Education, Port Saied University, Port Saied, Egypt.
 
[81]  Kumar, A. Y. & Dinesh C. R. (2018).In vitro screening of Ashwagandha root extracts for the maximum functional components. The Pharma Innovation Journal, 7(2): 12-16.
 
[82]  Kateřina, M., Rita, A., Luciano, S. & Přemysl, M. (2019). The influence of alkaloids on oxidative stress and related signaling pathways. Free Radical Biology and Medicine, 134: 429-444.
 
[83]  Plaza, M., Amigo-Benavent, M., del-Castillo, M. D., Ibáñez, E. & Herrero, M. (2010). Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International, 43(10): 2341-2348.
 
[84]  Shinichi T. (2011). Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs 9: 1101-1118.
 
[85]  Lien, A., Hua, H. & Chuong, P. (2008). Free Radicals, Antioxidants in Disease and Health. Int J Biomed Sci. 4(2): 89–96.
 
[86]  Majid, S., Khanduja, K.L., Gandhi, R.K., Kapur, S. & Sharma, R.R. (1991). Influence of ellagic acid on antioxidant defense system and lipid peroxidation in mice. Biochem. Pharmacol, 42 (7): 1441-1445.
 
[87]  Elbasouny, G., Shehata, N. & Elhassaneen, Y. (2019). Feeding of some selected food industries by-products induced changes in oxidants/antioxidant status, lipids profile, glucose and immunological parameters of blood obese rats. The 6th Scientific and 4th International Conference "The Future of Specific Education and people with Special Needs in Light of the Concept of Quality ", 24-26 February 2019, Faculty of Specific Education, Ain Sokhna University, El-Ain El-Soghna, Egypt
 
[88]  Elhassaneen, Y., El-Dashlouty, M. & El-Gamal, N. (2020). Effects of brown algae (Sargassum subrepandum) consumption on obesity induced changes in oxidative stress and bone indices. Journal of Home Economics, 30 (4):687-708.
 
[89]  Khare, C. P. (2007) Indian Medicinal Plants–An Illustrated Dictionary. First Indian Reprint, Springer (India) Pvt. Ltd., New Delhi, 717- 718.
 
[90]  Bhattacharya, S. K. (1992).Evaluation of adaptogenic activity of some Indian medicinal plants. Withania somnifera and Ocimum sanctum with special reference to stress-induced gastric ulcer in albino rats. Proc Intl Seminar on Traditional Med. Calcutta, 7-9.
 
[91]  Rege, N. N., Thatte, U. M. & Dahanukar, S. A. (1999). Adaptogenic activity of six rasayana herbs used in Ayurvedic medicine. Phytotherapy Res. 13 (4): 275-291.
 
[92]  Chisolm, G. & Steinberg, D. (2000). The oxidative modification hypothesis of atherogenesis: an overview. Free Radical and Biological Medicine, 28: 1815-1826.
 
[93]  Hong, W. & Cam, P. (2015). Atherosclerosis: Risks, Mechanisms, and Therapies, Published by John Wiley & Sons, Inc., Hoboken, NJ.
 
[94]  Woldegiorgis, A. Z., Abate, D., Haki, G. D. & Ziegler, G. R. (2014). Antioxidant property of edible mushrooms collected from Ethiopia. Food Chemistry. 157: 30-36.
 
[95]  Paul, R. K. (2016). In vitro Antioxidant activity of Withania somnifera root. Int J Adv Res Comput Sci., 3(3): 45-56.
 
[96]  RAAKHEE, M., MAHADEO, P. & LAVEKAR, G. (2009). An approach of Ashwagandha + Guggului AtheromatousCHD associated with Obesity. AYU. 30(2): 121-129.
 
[97]  Ali.H.M. (2021).Ashwagandha (Withania somnifera) and Their Effects on the Reproductive Hormones of Male Rats. Home Econ. J., 37 (2): 1-22.
 
[98]  Guo, Y., Wang, S., Wang, Y. & Zhu, T. (2016). Silymarin improved diet-induced liver damage and insulin resistance by decreasing inflammation in mice. Pharmaceutical Biology, 54, 2995-3000.
 
[99]  Sayin, F. K., Buyukbas, S., Basarali, M. K., Alp, H., Toy, H. & Ugurcu, V. (2016). Effects of Silybum marianum extract on high-fat diet-induced metabolic disorders in rats. Polish J Food Nutr Sci, 66: 43-49.
 
[100]  Mandal, R., Loeffler, A. G., Salamat, S. & Fritsch, M. K. (2012). Organ weight changes associated with body mass index determined from a medical autopsy population. Am J Forensic Med Pathol. 33(4): 382-9.
 
[101]  Waxler, S. & Enger, M. (1954). Organ Weights and Obesity in Mice. The Journal of Nutrition, 54(2): 209-214.
 
[102]  Rastogi, R. P. & Mehrotra, B. N. (1998). Compendium of Indian Medicinal Plants. 2nd Reprint, Central Drug Research Institute, Lucknow and National Institute of Science Communication, Council of Scientific and Industrial Research, New Delhi.
 
[103]  Elmaadawy, A., Arafa, R. & Elhassaneen, Y. (2016). Oxidative Stress and antioxidant defense systems status in obese rats feeding some selected food processing by-products applied in bread. Journal of Home Economics, 26 (1): 1-37.
 
[104]  Mahran, M. Z., Abd Elsabor, R. G. & Elhassaneen, Y. A. (2018). Effect of feeding some selected food processing by-products on blood oxidant and antioxidant status of obese rats. Proceeding of the 1st Scientific International Conference of the Faculty of Specific Education, Minia University, “Specific Education, innovation and labor market” 16-17 Juli, 2018, Minia, Egypt.
 
[105]  Sayed-Ahmed, S., Shehata, N. & Elhassaneen, Y. (2020). Potential Protective Effects of Ganoderma lucidum Powder against Carbon Tetrachloride Induced Liver Disorders in rats: Biological, Biochemical and Immunological.
 
[106]  Bhattacharya, S. K., Satyan, K. S. & Ghosal, S. (1997). Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol. 35 (3): 236-239.
 
[107]  Sayed Ahmed, S. (2016). Nutritional and technological studies on the effect of phytochemicals on obesity injuries and their related diseases by using experimental animals" Ph.D. Thesis in Home Economics (Nutrition and Food Science), Faculty of Specific Education, Port Said University, Egypt.
 
[108]  Shalaby, H. & Elhassaneen, Y. (2021). Functional and Health Properties of Yogurt Supplemented with Green Tea or Green Coffee Extracts and its Effect on Reducing Obesity Complications in Rats. Alexandria Science Exchange Journal, 42 (2): 559-571.
 
[109]  Elhassaneen, Y., Nasef, A. & Abo-Khazima, A. (2020-a). Effect of coconut fruits and their milk on biological and biochemical changes of hypercholesterolemic rats. Journal of Home Economics, 30 (1): 85-106.
 
[110]  Elhassaneen, Y., Abd El-Rahman, A. & El-Samouny, S. (2021-c). Potential Protective Effects of Cauliflower Leaves and Prickly Pear Fruits Skin on Liver Disorders Induced by Carbon Tetrachloride in Rats. Journal of Home Economics, 32 (1): 19-42.
 
[111]  Elhassaneen, Y., Sayed Ahmed, S., Elwasef, S. & Fayez, S. (2022). Effect of brown algae ethanolic extracts consumption on obesity complications induced by high fat diets in rats. Port Saied Specific Research Journal (PSSRJ), 15 (1).
 
[112]  Derosa, G., Romano, D., D'Angelo, A. & Maffioli, P. (2015). Berberis aristata/Silybum marianum fixed combination (Berberol®) effects on lipid profile in dyslipidemic patients intolerant to statins at high dosages: A randomized, placebo-controlled, clinical trial. Phytomedicine, 22: 231- 237.
 
[113]  Heidarian, E. & Rafieian-Kopaei, M. (2012). Effect of silymarin on liver phoshpatidate phosphohydrolase in hyperlipidemic rats. Bioscience Research, 9: 59-67.
 
[114]  Bartus, R.T., Dean, R.L. & Beer B. (1982). "The cholinergic hypothesis of geriatric memory dysfunction". Science. 217 (4558): 408-417.
 
[115]  Craig, L. A., Hong, N. S. & McDonald, R. J. (2011). "Revisiting the cholinergic hypothesis in the development of Alzheimer's disease". Neuroscience & Biobehavioral Reviews. 35 (6): 1397-1409.
 
[116]  Melo, J. B, Agostinho, P. & Oliveira, C. R. (2003).Involvement of oxidative stress in the enhancement of acetylcholinesterase activity induced by amyloid betapeptide. Neurosci Res. 45(1): 117-27.
 
[117]  Schliebs, R., Liebmann, A., Bhattacharya, S. K., Kumar, A., Ghosal, S. & Bigal V.(1997) Systemic administration of defined extracts from Withania somnifera (Indian ginseng) and Shilajit differentially affect cholinergic but not glutamergic and GABAergic markers in rat brain. Neurochem Int., 30(2): 181-190.
 
[118]  VoeT, D. & VoeT, J. G. (1990). Eukaryotic gene expression. In: Biochemistry, John Wiley and Sons, New York, 1032-1085.
 
[119]  Nam, S., Keunyoung, K., Bum S. Kim., Hyung-Jun, I., Seung, H. L., Seong-Jang, K., In Joo K. & Kyoungjune, P. (2018).The Effect of Obesity on the Availabilities of Dopamine and Serotonin Transporters. SCIeNTIFIC RePorts 8:1-6.
 
[120]  Lam, D. D., Garfield, A. S., Marston, O. J., Shaw, J. & Heisler, L. K. (2010). Brain serotonin system in the coordination of food intake and body weight. Pharmacol Biochem Behav, 97: 84-91.
 
[121]  Morton, G. J., Meek, T. H. & Schwartz, M. W. (2014). Neurobiology of food intake in health and disease. Nat Rev Neurosci, 15: 367-378.
 
[122]  Mousseau, D. & G. B. Baker. (2012). Recent developments in the regulation of monoamine oxidase form and function: is the current model restricting our understanding of the breadth of contribution of monoamine oxidase to brain dysfunction? Current Topics inMedicinal Chemistry, 12(20): 2163-2176.
 
[123]  L´opez-P´erez, S. A., Morales-Villagr´an. & L. Medina-Ceja, (2015). “Effect of perinatal asphyxia and carbamazepine treatment on cortical dopamine and DOPAC levels,” Journal of Biomedical Science, 22, article 1.
 
[124]  Pannacciulli, N., Del Parigi, A., Chen, K., Le DSN., Reiman, E. M. & Tataranni, P. A. (2006). Brain abnormalities in human obesity: a voxel-based morphometric study NeuroImage. 31(4): 1419-25.
 
[125]  Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N. & Ingram, D. K. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. J Neuroimmunol. 219 (1–2):25-32