[1] | G. Giacalone, and V. Chiabrando, “Effect of different treatments with calcium salts on sensory quality of fresh-cut apple,” Journal of Food and Nutrition Research, 52 (2). 79-86. 2013. |
|
[2] | M. B. Kralj, M. Podrazka, B. Krawczyk, R. P. Mikus, K. Jarni, and P. Trebse, ““Raw food” diet: the effect of maximal temperature (46 +/- 1 degrees C) on aflatoxin B-1 and oxalate contents in food,” Journal of Food and Nutrition Research, 56 (3). 277-282. 2017. |
|
[3] | M. Carvalho, B. O. Erbano, E. Y. Kuwaki, H. P. Pontes, J. Liu, L. H. Boros, M. O. Asinelli, and C. P. Baena, “Effect of potassium citrate supplement on stone recurrence before or after lithotripsy: systematic review and meta-analysis,” Urolithiasis, 45 (5). 449-455. 2017. |
|
[4] | S. K. Choi, Y. G. Kim, K. H. Yoo, D. G. Lee, G. E. Min, and H. L. Lee, “Hyperkalemic cardiac arrhythmia resulting from short-term ingestion of potassium citrate for the management of ureter stones,” Urolithiasis, 44 (3). 283-284. 2016. |
|
[5] | Y. Song, N. Hernandez, J. Shoag, D. S. Goldfarb, and B. H. Eisner, “Potassium citrate decreases urine calcium excretion in patients with hypocitraturic calcium oxalate nephrolithiasis,” Urolithiasis, 44 (2). 145-148. 2016. |
|
[6] | F. L. Coe, J. H. Parks, and J. R. Asplin, “The pathogenesis and treatment of kidney stones,” N Engl J Med, 327 (16). 1141-1152. 1992. |
|
[7] | R. L. Ryall, R. M. Harnett, and V. R. Marshall, “The effect of urine, pyrophosphate, citrate, magnesium and glycosaminoglycans on the growth and aggregation of calcium oxalate crystals in vitro,” Clin Chim Acta, 112 (3). 349-356. 1981. |
|
[8] | J. Chung, I. Granja, M. G. Taylor, G. Mpourmpakis, J. R. Asplin, and J. D. Rimer, “Molecular modifiers reveal a mechanism of pathological crystal growth inhibition,” Nature, 536 (7617). 446-450. 2016. |
|
[9] | Y. H. Chen, H. P. Liu, H. Y. Chen, F. J. Tsai, C. H. Chang, Y. J. Lee, W. Y. Lin, and W. C. Chen, “Ethylene glycol induces calcium oxalate crystal deposition in Malpighian tubules: a Drosophila model for nephrolithiasis/urolithiasis,” Kidney Int, 80 (4). 369-377. 2011. |
|
[10] | W. C. Chen, H. Y. Chen, P. C. Liao, S. J. Wang, M. Y. Tsai, Y. H. Chen, and W. Y. Lin, “Toward a new insight of calcium oxalate stones in Drosophila by micro-computerized tomography,” Urolithiasis, 46 (2). 149-155. 2018. |
|
[11] | W. C. Chen, W. Y. Lin, H. Y. Chen, C. H. Chang, F. J. Tsai, K. M. Man, J. L. Shen, and Y. H. Chen, “Melamine-induced urolithiasis in a Drosophila model,” J Agric Food Chem, 60 (10). 2753-2757. 2012. |
|
[12] | M. R. Greenwood, M. P. Cleary, R. Gruen, D. Blase, J. S. Stern, J. Triscari, and A. C. Sullivan, “Effect of (-)-hydroxycitrate on development of obesity in the Zucker obese rat,” Am J Physiol, 240 (1). E72-78. 1981. |
|
[13] | M. Leonhardt, B. Hrupka, and W. Langhans, “Effect of hydroxycitrate on food intake and body weight regain after a period of restrictive feeding in male rats,” Physiol Behav, 74 (1-2). 191-196. 2001. |
|
[14] | A. C. Sullivan, J. G. Hamilton, O. N. Miller, and V. R. Wheatley, “Inhibition of lipogenesis in rat liver by (-)-hydroxycitrate,” Arch Biochem Biophys, 150 (1). 183-190. 1972. |
|
[15] | C. Sullivan, and J. Triscari, “Metabolic regulation as a control for lipid disorders. I. Influence of (--)-hydroxycitrate on experimentally induced obesity in the rodent,” Am J Clin Nutr, 30 (5). 767-776. 1977. |
|
[16] | J. A. Watson, M. Fang, and J. M. Lowenstein, “Tricarballylate and hydroxycitrate: substrate and inhibitor of ATP: citrate oxaloacetate lyase,” Arch Biochem Biophys, 135 (1). 209-217. 1969. |
|
[17] | M. Shara, S. E. Ohia, T. Yasmin, A. Zardetto-Smith, A. Kincaid, M. Bagchi, A. Chatterjee, D. Bagchi, and S. J. Stohs, “Dose- and time-dependent effects of a novel (-)-hydroxycitric acid extract on body weight, hepatic and testicular lipid peroxidation, DNA fragmentation and histopathological data over a period of 90 days,” Mol Cell Biochem, 254 (1-2). 339-346. 2003. |
|
[18] | M. Leonhardt, and W. Langhans, “Hydroxycitrate has long-term effects on feeding behavior, body weight regain and metabolism after body weight loss in male rats,” J Nutr, 132 (7). 1977-1982. 2002. |
|
[19] | E. M. Kovacs, M. S. Westerterp-Plantenga, and W. H. Saris, “The effects of 2-week ingestion of (--)-hydroxycitrate and (--)-hydroxycitrate combined with medium-chain triglycerides on satiety, fat oxidation, energy expenditure and body weight,” Int J Obes Relat Metab Disord, 25 (7). 1087-1094. 2001. |
|
[20] | S. B. Heymsfield, D. B. Allison, J. R. Vasselli, A. Pietrobelli, D. Greenfield, and C. Nunez, “Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial,” JAMA, 280 (18). 1596-1600. 1998. |
|
[21] | L. O. Chuah, W. Y. Ho, B. K. Beh, and S. K. Yeap, “Updates on Antiobesity Effect of Garcinia Origin (-)-HCA,” Evid Based Complement Alternat Med, 2013. 751658. 2013. |
|
[22] | M. Shim, and S. Saab, “Severe hepatotoxicity due to Hydroxycut: a case report,” Dig Dis Sci, 54 (2). 406-408. 2009. |
|
[23] | S. J. Stohs, H. G. Preuss, S. E. Ohia, G. R. Kaats, C. L. Keen, L. D. Williams, and G. A. Burdock, “No evidence demonstrating hepatotoxicity associated with hydroxycitric acid,” World J Gastroenterol, 15 (32). 4087-4089. 2009. |
|
[24] | K. E. Lunsford, A. S. Bodzin, D. C. Reino, H. L. Wang, and R. W. Busuttil, “Dangerous dietary supplements: Garcinia cambogia-associated hepatic failure requiring transplantation,” World J Gastroenterol, 22 (45). 10071-10076. 2016. |
|
[25] | A. Lobb, “Hepatoxicity associated with weight-loss supplements: a case for better post-marketing surveillance,” World J Gastroenterol, 15 (14). 1786-1787. 2009. |
|
[26] | M. Saito, M. Ueno, S. Ogino, K. Kubo, J. Nagata, and M. Takeuchi, “High dose of Garcinia cambogia is effective in suppressing fat accumulation in developing male Zucker obese rats, but highly toxic to the testis,” Food Chem Toxicol, 43 (3). 411-419. 2005. |
|
[27] | P. H. Huang, H. Y. Tsai, C. H. Wang, Y. H. Chen, J. S. Chen, F. Y. Lin, C. P. Lin, T. C. Wu, M. Sata, J. W. Chen, and S. J. Lin, “Moderate intake of red wine improves ischemia-induced neovascularization in diabetic mice--roles of endothelial progenitor cells and nitric oxide,” Atherosclerosis, 212 (2). 426-435. 2010. |
|