Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2018, 6(6), 386-392
DOI: 10.12691/jfnr-6-6-6
Open AccessArticle

Protective Effect of Wheat Derived Non-specific lipid-transfer Protein 2 on Vascular Endothelium Inflammation

Emanuela Leoncini1, Cecilia Prata2, Marco Malaguti1, Cristina Angeloni3, Luca Massaccesi1, Sara Bosi4, Valeria Bregola4, Ilaria Marotti4, Giovanni Dinelli4 and Silvana Hrelia1,

1Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921 Rimini, Italy

2Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy

3School of Pharmacy, University of Camerino, Camerino, Italy

4Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy

Pub. Date: June 20, 2018

Cite this paper:
Emanuela Leoncini, Cecilia Prata, Marco Malaguti, Cristina Angeloni, Luca Massaccesi, Sara Bosi, Valeria Bregola, Ilaria Marotti, Giovanni Dinelli and Silvana Hrelia. Protective Effect of Wheat Derived Non-specific lipid-transfer Protein 2 on Vascular Endothelium Inflammation. Journal of Food and Nutrition Research. 2018; 6(6):386-392. doi: 10.12691/jfnr-6-6-6

Abstract

The important functions of the endothelium and the relationship between cardiovascular risk factors and endothelial dysfunction suggest the primary role of this tissue as a target for dietary strategies aimed at the prevention from related diseases. Cereals are key component of a healthy and balanced diet, and the presence of non-specific lipid-transfer protein 2 (nsLTP2) in wheat represents an added value to contribute to maintain the functionality of the vascular endothelium and consequently of the cardiovascular system. Indeed, nsLTP2 downregulates the expression of the main cell adhesion molecules induced by a pro-inflammatory cytokine and, meanwhile, upregulates heme oxigenase-1, exerting a cytoprotective/anti-inflammatory activity. Therefore, nsLTP2 might represent a food-derived tool to protect the vascular system against several pathological conditions.

Keywords:
wheat bioactive peptides nsLTP2 vascular endothelium cytoprotection inflammation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 5

References:

[1]  Yang, Z., L. Chen, C. Su, W.H. Xia, Y. Wang, J.M. Wang, F. Chen, Y.Y. Zhang, F. Wu, S.Y. Xu, X.L. Zhang, and J. Tao, “Impaired endothelial progenitor cell activity is associated with reduced arterial elasticity in patients with essential hypertension”, Clin Exp Hypertens, 32 (7), 444-52, 2010.
 
[2]  Montezano, A.C. and R.M. Touyz, “Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician”, Can J Cardiol, 28 (3), 288-95, 2012.
 
[3]  Munzel, T. and E. Schulz, “[Treatment of coronary heart disease with nitric oxide donors]”, Pharm Unserer Zeit, 39 (5), 359-68, 2010.
 
[4]  Lum, H. and K.A. Roebuck, “Oxidant stress and endothelial cell dysfunction”, Am J Physiol Cell Physiol, 280 (4), C719-41, 2001.
 
[5]  Hadi, H.A., C.S. Carr, and J. Al Suwaidi, “Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome”, Vasc Health Risk Manag, 1 (3), 183-98, 2005.
 
[6]  Higashi, Y., K. Noma, M. Yoshizumi, and Y. Kihara, “Endothelial function and oxidative stress in cardiovascular diseases”, Circ J, 73 (3), 411-8, 2009.
 
[7]  Karbach, S., A.L. Croxford, M. Oelze, R. Schuler, D. Minwegen, J. Wegner, L. Koukes, N. Yogev, A. Nikolaev, S. Reissig, A. Ullmann, M. Knorr, M. Waldner, M.F. Neurath, H. Li, Z. Wu, C. Brochhausen, J. Scheller, S. Rose-John, C. Piotrowski, I. Bechmann, M. Radsak, P. Wild, A. Daiber, E. von Stebut, P. Wenzel, A. Waisman, and T. Munzel, “Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease”, Arterioscler Thromb Vasc Biol, 34 (12), 2658-68, 2014.
 
[8]  Daiber, A., S. Steven, A. Weber, V.V. Shuvaev, V.R. Muzykantov, I. Laher, H. Li, S. Lamas, and T. Munzel, “Targeting vascular (endothelial) dysfunction”, Br J Pharmacol, 174 (12), 1591-1619, 2017.
 
[9]  Aggarwal, B.B., S.C. Gupta, and B. Sung, “Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers”, Br J Pharmacol, 169 (8), 1672-92, 2013.
 
[10]  Levine, B., J. Kalman, L. Mayer, H.M. Fillit, and M. Packer, “Elevated circulating levels of tumor necrosis factor in severe chronic heart failure”, N Engl J Med, 323 (4), 236-41, 1990.
 
[11]  Steyers, C.M., 3rd and F.J. Miller, Jr., “Endothelial dysfunction in chronic inflammatory diseases”, Int J Mol Sci, 15 (7), 11324-49, 2014.
 
[12]  Kuntz, S., S. Rudloff, J. Ehl, R.G. Bretzel, and C. Kunz, “Food derived carbonyl compounds affect basal and stimulated secretion of interleukin-6 and -8 in Caco-2 cells”, Eur J Nutr, 48 (8), 499-503, 2009.
 
[13]  Chanput, W., J. Mes, R.A. Vreeburg, H.F. Savelkoul, and H.J. Wichers, “Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds”, Food Funct, 1 (3), 254-61, 2011.
 
[14]  Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A.F. Cicero, and S. Hrelia, “Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects”, Int J Mol Sci, 15 (11), 21120-35, 2014.
 
[15]  Kitts, D.D. and K. Weiler, “Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery”, Curr Pharm Des, 9 (16), 1309-23, 2003.
 
[16]  Chakrabarti, S., F. Jahandideh, and J. Wu, “Food-derived bioactive peptides on inflammation and oxidative stress”, Biomed Res Int, 2014 608979, 2014.
 
[17]  Erdmann, K., B.W. Cheung, and H. Schroder, “The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease”, J Nutr Biochem, 19 (10), 643-54, 2008.
 
[18]  Nakurte, I., K. Klavins, I. Kirhnere, J. Namniece, L. Adlere, J. Matvejevs, A. Kronberga, A. Kokare, V. Strazdina, L. Legzdina, and R. Muceniece, “Discovery of lunasin peptide in triticale (X Triticosecale Wittmack)”, Journal of Cereal Science, 56 510-514, 2012.
 
[19]  Dinelli, G., V. Bregola, S. Bosi, J. Fiori, R. Gotti, E. Simonetti, C. Trozzi, E. Leoncini, C. Prata, L. Massaccesi, M. Malaguti, R. Quinn, and S. Hrelia, “Lunasin in wheat: a chemical and molecular study on its presence or absence”, Food Chem, 151 520-5, 2014.
 
[20]  Bosi, S., J. Fiori, G. Dinelli, N.M. Rigby, E. Leoncini, C. Prata, V. Bregola, I. Marotti, R. Gotti, M. Naldi, L. Massaccesi, M. Malaguti, P. Kroon, and S. Hrelia, “Isolation and characterization of wheat derived non specific Lipid Transfer Protein 2 (nsLTP2)”, J Food Sci, 83 (6), 1516-1521, 2018.
 
[21]  Paine, A., B. Eiz-Vesper, R. Blasczyk, and S. Immenschuh, “Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential”, Biochem Pharmacol, 80 (12), 1895-903, 2010.
 
[22]  Caliceti, C., P. Rizzo, R. Ferrari, F. Fortini, G. Aquila, E. Leoncini, L. Zambonin, B. Rizzo, D. Calabria, P. Simoni, M. Mirasoli, M. Guardigli, S. Hrelia, A. Roda, and A.F.G. Cicero, “Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin”, Nutr Metab Cardiovasc Dis, 27 (6), 552-563, 2017.
 
[23]  Slavin, J.L., D. Jacobs, L. Marquart, and K. Wiemer, “The role of whole grains in disease prevention”, J Am Diet Assoc, 101 (7), 780-5, 2001.
 
[24]  Seal, C.J. and I.A. Brownlee, “Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies”, Proc Nutr Soc, 74 (3), 313-9, 2015.
 
[25]  Leoncini, E., C. Prata, M. Malaguti, I. Marotti, A. Segura-Carretero, P. Catizone, G. Dinelli, and S. Hrelia, “Phytochemical profile and nutraceutical value of old and modern common wheat cultivars”, PLoS One, 7 (9), e45997, 2012.
 
[26]  Lee, A.S., J.S. Kim, Y.J. Lee, D.G. Kang, and H.S. Lee, “Anti-TNF-alpha activity of Portulaca oleracea in vascular endothelial cells”, Int J Mol Sci, 13 (5), 5628-44, 2012.
 
[27]  Xia, F., C. Wang, Y. Jin, Q. Liu, Q. Meng, K. Liu, and H. Sun, “Luteolin protects HUVECs from TNF-alpha-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-kappaB and MAPK pathways”, J Atheroscler Thromb, 21 (8), 768-83, 2014.
 
[28]  Chen, T.L., G.L. Zhu, J.A. Wang, G.D. Zhang, H.F. Liu, J.R. Chen, Y. Wang, and X.L. He, “Protective effects of isorhamnetin on apoptosis and inflammation in TNF-alpha-induced HUVECs injury”, Int J Clin Exp Pathol, 8 (3), 2311-20, 2015.
 
[29]  Kim, D.H., S.M. Lee, Y.J. Lee, J.J. Yoon, R. Tan, Y.C. Yu, D.G. Kang, and H.S. Lee, “Effect of Paeotang on tumor necrosis factor alpha-induced vascular inflammation in human umbilical vein endothelial cells”, Chin J Integr Med, 2017.
 
[30]  Talalay, P., “Chemoprotection against cancer by induction of phase 2 enzymes”, Biofactors, 12 (1-4), 5-11, 2000.
 
[31]  Calay, D. and J.C. Mason, “The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium”, Antioxid Redox Signal, 20 (11), 1789-809, 2014.
 
[32]  Ishikado, A., Y. Nishio, K. Morino, S. Ugi, H. Kondo, T. Makino, A. Kashiwagi, and H. Maegawa, “Low concentration of 4-hydroxy hexenal increases heme oxygenase-1 expression through activation of Nrf2 and antioxidative activity in vascular endothelial cells”, Biochem Biophys Res Commun, 402 (1), 99-104, 2010.
 
[33]  Liu, X.M., K.J. Peyton, A.R. Shebib, H. Wang, R.J. Korthuis, and W. Durante, “Activation of AMPK stimulates heme oxygenase-1 gene expression and human endothelial cell survival”, Am J Physiol Heart Circ Physiol, 300 (1), H84-93, 2011.
 
[34]  Lee, S.E., S.I. Jeong, G.D. Kim, H. Yang, C.S. Park, Y.H. Jin, and Y.S. Park, “Upregulation of heme oxygenase-1 as an adaptive mechanism for protection against crotonaldehyde in human umbilical vein endothelial cells”, Toxicol Lett, 201 (3), 240-8, 2011.
 
[35]  Wu, C.C., M.C. Hsu, C.W. Hsieh, J.B. Lin, P.H. Lai, and B.S. Wung, “Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways”, Life Sci, 78 (25), 2889-97, 2006.
 
[36]  Haines, D.D., I. Lekli, P. Teissier, I. Bak, and A. Tosaki, “Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: focus on cardiovascular, lung, neurological and kidney disorders”, Acta Physiol (Oxf), 204 (4), 487-501, 2012.
 
[37]  Mrad, M.F., C.A. Mouawad, M. Al-Hariri, A.A. Eid, J. Alam, and A. Habib, “Statins modulate transcriptional activity of heme-oxygenase-1 promoter in NIH 3T3 Cells”, J Cell Biochem, 113 (11), 3466-75.
 
[38]  Yang, J.C., F. Huang, C.J. Wu, Y.C. Chen, T.H. Lu, and C.H. Hsieh, “Simvastatin reduces VCAM-1 expression in human umbilical vein endothelial cells exposed to lipopolysaccharide”, Inflamm Res, 61 (5), 485-91, 2012.
 
[39]  Olszanecki, R., A. Gebska, and R. Korbut, “The role of haem oxygenase-1 in the decrease of endothelial intercellular adhesion molecule-1 expression by curcumin”, Basic Clin Pharmacol Toxicol, 101 (6), 411-5, 2007.
 
[40]  Li, B., Y.J. Lee, Y.C. Kim, J.J. Yoon, S.M. Lee, Y.P. Lee, D.G. Kang, and H.S. Lee, “Sauchinone from Saururus chinensis protects vascular inflammation by heme oxygenase-1 induction in human umbilical vein endothelial cells”, Phytomedicine, 21 (2), 101-8, 2014.
 
[41]  Dia, V.P., S. Torres, B.O. De Lumen, J.W. Erdman, Jr., and E.G. De Mejia, “Presence of lunasin in plasma of men after soy protein consumption”, J Agric Food Chem, 57 (4), 1260-6, 2009.