Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2016, 4(6), 400-407
DOI: 10.12691/jfnr-4-6-9
Open AccessArticle

Protective Effect of Propolis Extract on Pancreatic β Cell under Oxidative Stress in vitro

Sebastián Zagmutt1, 2, Elba Leiva3, Verónica Mujica4 and Sergio Wehinger4,

1Master Program in Biomedical Sciences, Faculty of Health Sciences, Universidad de Talca

2Faculty of Health Sciences, Department of Biomedical Sciences, University of Talca

3Faculty of Health Sciences, University of Talca, Interdisciplinary Excellence Research Program Healthy Ageing (PIEI-ES), Talca, Chile

4Faculty of Medicine, Universidad Católicadel Maule, Talca, Chile

Pub. Date: July 12, 2016

Cite this paper:
Sebastián Zagmutt, Elba Leiva, Verónica Mujica and Sergio Wehinger. Protective Effect of Propolis Extract on Pancreatic β Cell under Oxidative Stress in vitro. Journal of Food and Nutrition Research. 2016; 4(6):400-407. doi: 10.12691/jfnr-4-6-9

Abstract

Introduction: Oxidative stress is one of the most important mechanisms in the emergence of type 2 diabetes. It would therefore be important to increase the antioxidant potential to prevent the deleterious effects of oxidative stress. Methods: MTT assay was performed to assess cell viability in the murine β TC-6 beta cell line. TBARs (thiobarbituric acid reactive substances) and GSH (glutathione) were measured and apoptosis were assessed by flow cytometry. Results: Exposure to 150 µM of H2O2 and 100 µM of tert-butyl hydroperoxide (t-BOOH) significantly reduced cell viability. When cells were simultaneously incubated with propolis extract (PE) and oxidants, cell viability relative to control was maintained. Exposure of cells to oxidants increased TBARs levels and reduced GSH concentration, a condition that was reversed when incubated with PE. A significant increase in apoptotic cells was seen when exposed to oxidants, however simultaneous incubation with PE reduced the number of apoptotic cells. Conclusion: PE has a protective effect against oxidative stress.

Keywords:
Polyphenolic Propolis Antioxidants Oxidative stress pancreatic beta cell

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced Glycation End Products and Oxidative Stress in Type 2 Diabetes Mellitus. Biomolecules. 2015;5(1):194-222.
 
[2]  Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes research and clinical practice. 2011;94(3):311-21.
 
[3]  Maritim A, Sanders R, Watkins RJ. Diabetes, oxidative stress, and antioxidants: a review. Journal of biochemical and molecular toxicology. 2003;17(1):24-38.
 
[4]  Tiwari BK, Pandey KB, Abidi A, Rizvi SI. Markers of oxidative stress during diabetes mellitus. Journal of Biomarkers. 2013;2013:378790.
 
[5]  Erejuwa OO. Oxidative stress in diabetes mellitus: is there a role for hypoglycemic drugs and/or antioxidants. Oxidative Stress and Diseases. 2012:217-46.
 
[6]  Pala FS, Gürkan H. The role of free radicals in ethiopathogenesis of diseases. Advances in Molecular Biology. 2008;2(1).
 
[7]  Turk H, Sevinc A, Camci C, Cigli A, Buyukberber S, Savli H, Bayraktar N. Plasma lipid peroxidation products and antioxidant enzyme activities in patients with type 2 diabetes mellitus. Acta diabetologica. 2002; 39(3):117-22.
 
[8]  Griesmacher A, Kindhauser M, Andert SE, Schreiner W, Toma C, Knoebl P, Pietschmann P, Prager R, Schnack C, Schernthaner G. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. The American journal of medicine. 1995;98(5):469-75.
 
[9]  Fujiwara Y. Plasma levels of thiobarbituric acid reactive substances (TBARs) of the employee with type 2 diabetes mellitus with multiple lacunar lesions. JJOMT; 2003;5(1):3-10.
 
[10]  Dong Q, Cui Y, Chen L, Song J, Sun L. Urinary 8-hydroxydeoxyguanosine levels in diabetic retinopathy patients. European journal of ophthalmology. 2007;18(1):94-8.
 
[11]  Lagman M, Ly J, Saing T, Kaur SM, Vera TE, Morris D, et al. Investigating the Causes for Decreased Levels of Glutathione in Individuals with Type II Diabetes. PloS one. 2015;10(3):e0118436.
 
[12]  Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomedicine & Pharmacotherapy. 2003;57(3):145-55.
 
[13]  Oliveira H, Procópio J, Curi R, Carpinelli A. Nutrient regulation of β cells NADPH-oxidase activity. avances diabetología. 2002:136.
 
[14]  Meidute‐Abaraviciene S, Mosen H, Lundquist I, Salehi A. Imidazoline‐induced amplification of glucose‐and carbachol‐stimulated insulin release includes a marked suppression of islet nitric oxide generation in the mouse. Acta physiologica. 2009;195(3):375-83.
 
[15]  Meares GP, Fontanilla D, Broniowska KA, Andreone T, Lancaster JR, Corbett JA. Differential responses of pancreatic β-cells to ROS and RNS. American Journal of Physiology-Endocrinology and Metabolism. 2013;304(6):E614-E22.
 
[16]  Mosén H. Regulation of Insulin Secretion in Relation to Nitric Oxide, Carbon Monoxide and Acid alpha-Glucoside Hydrolase Activities: Lund University; 2005.
 
[17]  Eckersten D, Henningsson R. Nitric oxide (NO)—Production and regulation of insulin secretion in islets of freely fed and fasted mice. Regulatory peptides. 2012;174(1):32-7.
 
[18]  Lenzen S. Oxidative stress: the vulnerable beta-cell. Biochemical Society Transactions. 2008;36(3):343.
 
[19]  Kajimoto Y, Kaneto H. Role of Oxidative Stress in Pancreatic β-Cell Dysfunction. Annals of the New York Academy of Sciences. 2004;1011(1):168-76.
 
[20]  Huang S, Zhang C-P, Wang K, Li GQ, Hu F-L. Recent Advances in the Chemical Composition of Propolis. Molecules. 2014;19(12):19610-32.
 
[21]  Barrientos L, Herrera CL, Montenegro G, Ortega X, Veloz J, Alvear M, Cuevas A, Saavedra N, Salazar L. Chemical and botanical characterization of Chilean propolis and biological activity on cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. Brazilian Journal of Microbiology. 2013;44(2):577-85.
 
[22]  Kurek-Górecka A, Rzepecka-Stojko A, Górecki M, Stojko J, Sosada M, Świerczek-Zięba G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules. 2013; 19(1):78-101.
 
[23]  Viloria JD, Gil JH, Durango DL, García C. Physicochemical characterization of propolis from the region of Bajo Cauca Antioqueño (Antioquia, Colombia). Biotecnología en el Sector Agropecuario y Agroindustrial. 2012;10(1):77-86.
 
[24]  Yang H, Dong Y, Du H, Shi H, Peng Y, Li X. Antioxidant compounds from propolis collected in Anhui, China. Molecules. 2011;16(4):3444-55.
 
[25]  Marcucci MC, Ferreres F, Garcıa-Viguera C, Bankova V, De Castro S, Dantas A, Valente PH, Paulino N. Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of ethnopharmacology. 2001;74(2):105-12.
 
[26]  Bankova V. Recent trends and important developments in propolis research. Evidence-based complementary and alternative medicine. 2005;2(1):29-32.
 
[27]  Popova M, Dimitrova R, Al-Lawati HT, Tsvetkova I, Najdenski H, Bankova V. Omani propolis: chemical profiling, antibacterial activity and new propolis plant sources. Chemistry Central Journal. 2013;7(1):158.
 
[28]  Maróstica Junior MR, Daugsch A, Moraes CS, Queiroga CL, Pastore GM, Parki YK. Comparison of volatile and polyphenolic compounds in Brazilian green propolis and its botanical origin Baccharis dracunculifolia. Food Science and Technology (Campinas). 2008;28(1):178-81.
 
[29]  Kumar L. Propolis in dentistry and oral cancer management. North American journal of medical sciences. 2014;6(6).
 
[30]  Toreti VC, Sato HH, Pastore GM, Park YK. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evidence-Based Complementary and Alternative Medicine. 2013;2013;2013:697390.
 
[31]  Wagh VD. Propolis: A wonder bees product and its pharmacological potentials. Advances in pharmacological sciences. 2013;2013: 308249.
 
[32]  Maruyama H, Sumitou Y, Sakamoto T, Araki Y, Hara H. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats. Biological & pharmaceutical bulletin. 2009;32(7):1244-50.
 
[33]  Sawicka D, Car H, Borawska MH, Nikliński J. The anticancer activity of propolis. Folia Histochemica et Cytobiologica. 2012;50(1):25-37.
 
[34]  Kumar N, KK MA, Dang R, Husain A. Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone. Journal of Medicinal Plants Research. 2008;2(12):361-4.
 
[35]  Cottica SM, Sawaya AC, Eberlin MN, Franco SL, Zeoula LM, Visentainer JV. Antioxidant activity and composition of propolis obtained by different methods of extraction. Journal of the Brazilian Chemical Society. 2011;22(5):929-35.
 
[36]  Poitout V, Robertson RP. Minireview: secondary β-cell failure in type 2 diabetes—a convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002;143(2):339-42.
 
[37]  Zamri NDM, Imam MU, Ghafar SAA, Ismail M. Antioxidative Effects of Germinated Brown Rice-Derived Extracts on H2O2-Induced Oxidative Stress in HepG2 Cells. Evidence-based complementary and alternative medicine: eCAM. 2014;2014: 371907.
 
[38]  Cort A, Ozdemir E, Timur M, Ozben T. Effects of curcumin on bleomycin‑induced oxidative stress in malignant testicular germ cell tumors. Molecular medicine reports. 2012;6(4):860-6.
 
[39]  Wehinger S, Ortiz R, Díaz MI, Aguirre A, Valenzuela M, Llanos P, Mc Master C, Leyton L, Quest AF. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2015;1852(5):693-708.
 
[40]  Siddique YH, Beg T, Afzal M. Protective effect of ascorbic acid against oxidative damage induced by hydrogen peroxide in cultured human peripheral blood lymphocytes. Indian Journal of Clinical Biochemistry. 2009;24(3):294-300.
 
[41]  Degasperi GR, Castilho RF, Vercesi AE. High susceptibility of activated lymphocytes to oxidative stress-induced cell death. Anais da Academia Brasileira de Ciências. 2008;80(1):137-48.
 
[42]  Lee JH, Lee JS, Kim YR, Jung WC, Lee KE, Lee SY, Hong EK. Hispidin isolated from Phellinus linteus protects against hydrogen peroxide–induced oxidative stress in pancreatic MIN6N β-cells. Journal of medicinal food. 2011;14(11):1431-8.
 
[43]  Cumaoğlu A, Ari N, Kartal M, Karasu Ç. Polyphenolic extracts from Olea europea L. protect against cytokine-induced β-cell damage through maintenance of redox homeostasis. Rejuvenation research. 2011;14(3):325-34.
 
[44]  González C, Andrews M, Leiva E, Quispe C, Arredondo M. Antioxidant Effects of Alperujo Extract (Arbequina and Frantoio Varieties) on MIN6 β-Cells Subjected to Stress with Glucose or H2O2. Food and Nutrition Sciences. 2014;2014. 1280-1289.
 
[45]  Martín MÁ, Ramos S, Cordero-Herrero I, Bravo L, Goya L. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress. Nutrients. 2013;5(8):2955-68.
 
[46]  Linden A, Gülden M, Martin H-J, Maser E, Seibert H. Peroxide-induced cell death and lipid peroxidation in C6 glioma cells. Toxicology in Vitro. 2008;22(5):1371-6.
 
[47]  Martin K, Failla M, Smith Jr J. Differential susceptibility of Caco-2 and HepG2 human cell lines to oxidative stress. J Elisha Mitchell Sci Soc. 1997;113:149-62.
 
[48]  Gallou G, Ruelland A, Legras B, Maugendre D, Allannic H, Cloarec L. Plasma malondialdehyde in type 1 and type 2 diabetic patients. Clinica chimica acta. 1993;214(2):227-34.
 
[49]  Scharf G, Prustomersky S, Knasmüller S, Schulte-Hermann R, Huber WW. Enhancement of glutathione and γ-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Nutrition and cancer. 2003;45(1):74-83.
 
[50]  Lee S-H, Park M-H, Kang S-M, Ko S-C, Kang M-C, Cho S, Park PJ, Jeon BT, Kim SK, Han JS, Jeon YJ. Dieckol isolated from Ecklonia cava protects against high-glucose induced damage to rat insulinoma cells by reducing oxidative stress and apoptosis. Bioscience, biotechnology, and biochemistry. 2012;76(8):1445-51.
 
[51]  Shivanna N, Naika M, Khanum F, Kaul VK. Antioxidant, anti-diabetic and renal protective properties of Stevia rebaudiana. Journal of Diabetes and its Complications. 2013;27(2):103-13.
 
[52]  Seo E, Lee E-K, Lee CS, Chun K-H, Lee M-Y, Jun H-S. Psoralea corylifolia L. Seed Extract Ameliorates Streptozotocin-Induced Diabetes in Mice by Inhibition of Oxidative Stress. Oxidative medicine and cellular longevity. 2014;2014.
 
[53]  Calhelha RC, Falcão S, Queiroz MJR, Vilas-Boas M, Ferreira IC. Cytotoxicity of portuguese propolis: the proximity of the in vitro doses for tumor and normal cell lines. BioMed research international. 2014;2014. 897361.
 
[54]  Yoon J, Ham H, Sung J, Kim Y, Choi Y, Lee J-S, Jeong HS, Lee J, Kim D. Black rice extract protected HepG2 cells from oxidative stress-induced cell death via ERK1/2 and Akt activation. Nutrition research and practice. 2014;8(2):125-31.
 
[55]  Lee Y, Shin D-h, Kim J-H, Hong S, Choi D, Kim Y-J, Kwak MK, Jung Y. Caffeic acid phenethyl ester-mediated Nrf2 activation and IκB kinase inhibition are involved in NFκB inhibitory effect: structural analysis for NFκB inhibition. European journal of pharmacology. 2010;643(1):21-8.
 
[56]  Levonen A-L, Inkala M, Heikura T, Jauhiainen S, Jyrkkänen H-K, Kansanen E, Määttä K, Romppanen E, Turunen P, Rutanen J, Ylä-Herttuala S. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arteriosclerosis, thrombosis, and vascular biology. 2007;27(4):741-7.
 
[57]  Ichikawa H, Satoh K, Tobe T, Yasuda I, Ushio F, Matsumoto K, et al. Free radical scavenging activity of propolis. Redox report. 2002;7(5):347-50.
 
[58]  Simon H-U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415-8.
 
[59]  Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Molecular cell. 2011;44(4):517-31.
 
[60]  Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. Control of Bcl-2 expression by reactive oxygen species. Proceedings of the National Academy of Sciences. 2003;100(25):15035-40.
 
[61]  Vatansever HS, Sorkun K, Gurhan SİD, Ozdal-Kurt F, Turkoz E, Gencay O, Salih B. Propolis from Turkey induces apoptosis through activating caspases in human breast carcinoma cell lines. Acta histochemica. 2010;112(6):546-56.
 
[62]  Begnini KR, Moura de Leon PM, Thurow H, Schultze E, Campos VF, Martins Rodrigues F, Borsuk S, Dellagostin OA, Savegnago L, Roesch-Ely M, Moura S, Padilha FF, Collares T, Henriques J, and Seixas FK. Brazilian Red Propolis Induces Apoptosis-Like Cell Death and Decreases Migration Potential in Bladder Cancer Cells. Evidence-Based Complementary and Alternative Medicine. 2014;2014. 639856.
 
[63]  Draganova-Filipova MN, Georgieva MG, Peycheva EN, Miloshev GA, Sarafian VS, Peychev LP. Effects of propolis and CAPE on proliferation and apoptosis of McCoy-Plovdiv cell line. Folia medica. 2007;50(1):53-9.
 
[64]  Claus R, Kinscherf R, Gehrke C, Bonaterra G, Basnet P, Metz J, Deigner HP. Antiapoptotic effects of propolis extract and propol on human macrophages exposed to minimally modified low density lipoprotein. Arzneimittel-Forschung. 2000;50(4):373-9.