Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2014, 2(11), 776-780
DOI: 10.12691/jfnr-2-11-3
Open AccessArticle

Ethanol Extract of Polygonatumofficinale Rhizome Inhibits Odorant-Induced Camp and Calcium Levels in Non-Chemosensory 3T3-L1 Cells

Yeo Cho Yoon1, Sung-Hee Kim1, Jin-Taek Hwang1, Mi Jeong Sung1, Myung-Sunny Kim1, Haeng Jeon Hur1, Mee Ra Rhyu1 and Jae-Ho Park1,

1Korea Food Research Institute, 1201-62 Anyangpangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, Republic of Korea

Pub. Date: October 20, 2014

Cite this paper:
Yeo Cho Yoon, Sung-Hee Kim, Jin-Taek Hwang, Mi Jeong Sung, Myung-Sunny Kim, Haeng Jeon Hur, Mee Ra Rhyu and Jae-Ho Park. Ethanol Extract of Polygonatumofficinale Rhizome Inhibits Odorant-Induced Camp and Calcium Levels in Non-Chemosensory 3T3-L1 Cells. Journal of Food and Nutrition Research. 2014; 2(11):776-780. doi: 10.12691/jfnr-2-11-3

Abstract

Polygonatum Officinalerhizome, a member of the liliaceae family, is commonly consumed as tea in Asia. It is also clinically used to treat obesity and fatigue in Korean traditional medicine. Although the anti-diabetic effect of POR has been described, little is known about its physiological role in the olfactory system. In this study, we investigated the effects of POR in 3T3-L1 cells expressing an odorant receptor. We have shown that the levels of cAMP and Ca2+ and the phosphorylation of Rap1A and CREB increased in response to an odorant, eugenol. POR significantly decreased the eugenol-induced increase in cAMP and Ca2+. Taken together, these data suggest that POR inhibits an odorant-induced signal transduction pathway.

Keywords:
cAMP adenylyl cyclase olfactory polygonatumofficinale 3T3-L1

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Gu, M., Zhang, Y.,Fan, S., Ding, X.,Ji,G., Huang, C., “Extracts of Rhizoma Polygonati Odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 mice”, PLoS One, 8 (11), e81724, 2013.
 
[2]  Park, U.H., Jeong, J.C., Jang, J.S., Sung, M.R.,Youn, H., Lee, S.J., Kim, E.J., Um, S.J., “Negative regulation of adipogenesis by kaempferol, a component of Rhizoma Polygonati Falcatum in 3T3-L1 cells”, Biological and Pharmaceutical Bulletin, 35 (9), 1525-1533, 2012.
 
[3]  Xian, Y.F., Lin, Z.X., Xu, X.Y.,Su, Z.R., Chen, J.N., Lai, X.P., Ip, S.P., “Effect of Rhizoma Polygonati on 12-O-tetradecanoylphorbol-acetate-induced ear edema in mice”, Journal of Ethnopharmacology, 142 (3),851-8566, 2012.
 
[4]  Chen, H., Feng, R., Guo, Y., Sun, L., Jiang, J., “Hypoglycemic effects of aqueous extract of Rhizoma Polygonati Odorati in mice and rats”, Journal of Ethnopharmacology, 74 (3), 225-229, 2001.
 
[5]  Kang, N., Koo, J., “Olfactory receptors in non-chemosensory tissues”, BMB Reports, 45 (11), 612-622, 2012.
 
[6]  Griffin, C.A., Kafadar, K.A., Pavlath, G.K., “MOR23 promotes muscle regeneration and regulates cell adhesion and migration”, Develpmental Cell, 17 (5), 649-661, 2009.
 
[7]  Fukuda, N., Yomogida, K., Okabe, M., Touhara, K., “Functional characterization of a mouse testicular olfactory receptor and its role in chemonsensing and regulation of sperm motility”, Journal of Cell Science, 117 (Pt24), 5835-5845, 2004.
 
[8]  Pluznick, J.L., Zou, D.J., Zhang, X., Yan, Q., Rodriguesz-Gil, D.J., Eisner, C., Wells, E., Greer, C.A., Wang, T., Firestein, S., Schnermann, J., Caplan, M.J., “Functional expression of the olfactory signaling system in the kidney”, Proceedings of the National Academy of Sciences of the United States of America, 106 (6), 2059-2064, 2009.
 
[9]  Dooley, R., Mashukova, A., Toetter, B., Hatt, H., Neuhaus, E.M., “Purinergic receptor antagonists inhibit odorant-mediated CREB phosphorylation in sustentacular cells of mouse olfactory epithelium”, BMC Neuroscience, 12 (86), 1471-2202-12-86, 2011.
 
[10]  Sheikh, I.A., Koley, H., Chakrabarti, M. K., Hoque, K.M., “The Epac1 signaling pathway regulates Cl- secretion via modulation of apical KCNN4c channels in Diarrhea”, The Journal of Biological Chemistry, 288 (28), 20404-20415, 2013.
 
[11]  Motawea, H.B.B., Jeyaraj, S.C., Eid, A.H., Mitra,S., Unger, N.T., Ahmed, A.A.E., Flavahan, N.A., Chotani, M.A., “Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle 2c-adrenoreceptors through the actin-binding protein filamin-2”, American Journal of Physiology Cell Physiology, 305, C829-C845, 2013.
 
[12]  Buck, L.B., Axel, R., “A novel multigene family may encode odorant receptors: a molecular basis for odor recognition”, Cell, 65, 175-187, 1991.
 
[13]  Wang, Z., Subramanya, A.R., Satlin, L.M., Pastor-Soler, N.M., Carattino, M.D., Kleyman, T.R., “Regulation of large-donductance Ca2+-activated K+ channels by WNK4 kinase”, American Journal of Physiology Cell Physiology, 305, C846-C853, 2013.
 
[14]  Lowe, G., Nakamura, T., Gold, G.H., “Adenylatecyclase mediates olfactory transduction for a wide variety of odorants”, Proceedings of the National Academy of Sciences of the United States of America, 86, 5641-5645, 1989.
 
[15]  Nakamura, T., Gold, G.H., “A cyclic nucleotide-gated conductance in olfactory receptor cilia”, Nature, 325, 442-444, 1987.
 
[16]  Jeyaraj, S.C., Unger, N.T., Eid, A.H., Mitra, S., El-Dahdah, N.P., Quilliam, L.A., Flavahan, N.A., Chotani, M.A., “Cyclic AMP-Rap1A signaling activates RhoA to induce 2c-adrenoceptor translocation ot the cell surface of microvascular smooth muscle cells”, American Journal of Physiology Cell Physiology, 303, C499-C511, 2012.
 
[17]  Yoon, Y.C., Hwang, J.T., Sung, M.J., Wang, S., Munkhtugs, D., Rhyu, M.R., Park, J.H., “Inhibitory effect of luteolin on the odorant-induced cAMP level in HEK 293 cells expressing the olfactory receptor”, Biofactors, 38 (5), 360-364, 2012.
 
[18]  Choi, Y., Hur, C.G., Park, T., “Induction of olfaction and cancer-related genes in mice fed a high-fat diet as assessed through the mode-of-action by network identification analysis”, Plos One, 8 (3), e56610, 2013.
 
[19]  Grewal, S.S., Fass, D.M., Yao, H., Ellig, C.L., Goodman, R.H., Stork, P.J., “Calcium and cAMP signals differentially regulate cAMP-responsive element-binding protein function via a Rap1-extracelluar signal-regulated kinase pathway”, The Journal of Biological Chemistry, 275 (44), 34433-34441, 2000.