Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2025, 13(3), 140-145
DOI: 10.12691/jfnr-13-3-3
Open AccessArticle

Evaluation of GLP-1 Secretion Enhancement by Fermented Taiwan Citrus Peel in STC-1 Cells

Ho-Shin Huang1, , Jyh-Perng Wang2, Shih-Hong Chen2, Zhe-Yu Jiang2, Si-Ting Lin1, Chun-Mei Lu1 and Ting-Yuan Hsu3

1Bio-Ray Biotech, INC, No. 21-3, Shennong E. Rd., Changzhi, Pingtung, Taiwan

2Animal Technology Research Center, Agricultural Technology Research Institute, No.52, Kedong 2nd Rd., Zhunan Township, Miaoli County, Taiwan

3R&D Center, Kao-Ho Hospital, No. 460, Bo'ai 1st Rd., Gushan Dist, Kaohsiung City, Taiwan

Pub. Date: March 21, 2025

Cite this paper:
Ho-Shin Huang, Jyh-Perng Wang, Shih-Hong Chen, Zhe-Yu Jiang, Si-Ting Lin, Chun-Mei Lu and Ting-Yuan Hsu. Evaluation of GLP-1 Secretion Enhancement by Fermented Taiwan Citrus Peel in STC-1 Cells. Journal of Food and Nutrition Research. 2025; 13(3):140-145. doi: 10.12691/jfnr-13-3-3

Abstract

This study using HPLC tandem mass investigates the contents of main flavonoid compounds in fermented peel of Taiwan Citrus with Lactic acid bacteria. The results showed hesperidin, nobiletin and tangeretin were the main flavonoid compounds in fermented peel of Citrus taiwanica (FCT). In contrast, eriocitrin and hesperidin were most abundant bioactivity compounds in fermented peel of Citrus limon (FLP07). In this study, we investigated the effect of fermented citrus peel (FCT and FLP07) on Glucagon-like peptide-1(GLP-1) secretion in STC-1 cells, a well-established enteroendocrine cell model. The results showed FCT and FLP07 at all tested concentrations induced significantly higher GLP-1 secretion and suggest that FCT and FLP07 are more potent than serotonin in stimulating GLP-1 release, highlighting their potential as functional ingredients for metabolic health applications.

Keywords:
fermented citrus peel flavonoid Glucagon-like peptide-1 metabolic associated fatty liver disease

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 3

References:

[1]  Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84.
 
[2]  Chitturi, S.; Farrell G.C.; George, J. Non-alcoholic steatohepatitis in the Asia-Pacific region: future shock? J. Gastroenterol Hepatol. 2004, 19 (4): 368-74.
 
[3]  Hsu, C.S.; Kao, J.H. Non-alcoholic fatty liver disease: An emerging liver disease in Taiwan. J. Formos. Med. Assoc. 2012, 111, 527–535.
 
[4]  Kawano, Y.; Cohen, D.E. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 2013, 48 (4): 434-41.
 
[5]  Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol. Life Sci. 2018, 75(18): 3313-3327.
 
[6]  Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018, 27: 740–756.
 
[7]  Sofogianni, A.; Filippidis, A.; Chrysavgis, L.; Tziomalos, K.; Cholongitas, E. Glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: An update. World J Hepatol. 2020 Aug 27; 12 (8): 493-505.
 
[8]  Nevola, R.; Epifani, R.; Imbriani, S.; Tortorella, G.; Aprea, C.; Galiero, R.; Rinaldi, L.; Marfella, R.;Sasso, F.C. GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci. 2023 Jan 15; 24(2): 1703.
 
[9]  Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523.
 
[10]  Chukwuma, C.I. Antioxidative, Metabolic and Vascular Medicinal Potentials of Natural Products in the Non-Edible Wastes of Fruits Belonging to the Citrus and Prunus Genera: A Review. Plants (Basel). 2024, 10: 13(2): 191.
 
[11]  Hajimahmoodi, M.; Moghaddam, G.; Mousavi, S. M.; Sadeghi, N.; Oveisi, M. R.; Jannat, B. Total Antioxidant Activity, and Hesperidin, Diosmin, Eriocitrin and Quercetin Contents of Various Lemon Juices. Trop. J. Pharm. Res. 2014, 13 (6): 951-956.
 
[12]  Nichols, L. A.; ackson, D. E.; Manthey, J. A.; Shukla, S. D.; Holland, L. J. Citrus flavonoids repress the mRNA for stearoyl-CoA desaturase, a key enzyme in lipid synthesis and obesity control, in rat primary hepatocytes. Lipids Health Dis.2011, 10:36.
 
[13]  Assini ,J.M.; Mulvihill, E.E.; Huff, M.W. Citrus flavonoids and lipid metabolism. Curr Opin Lipidol. 2013; 24: 34–40.
 
[14]  Saini, R. K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K. G. M.; and Keum, Y. S. Bioactive compounds of citrus fruits: a review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants (Basel).2022, 11: 239.
 
[15]  Kwon, E. Y.; Choi, M. S. Eriocitrin Improves Adiposity and Related Metabolic Disorders in High-Fat Diet-Induced Obese Mice. J. Med. Food. 2020, 23(3): 233-241.
 
[16]  Ke, Z.; Zhao, Y.; Tan, S.; Chen, H.; Li, Y.; Zhou, Z.; Huang, C. Citrus reticulata Blanco peel extract ameliorates hepatic steatosis, oxidative stress and inflammation in HF and MCD diet-induced NASH C57BL/6 J mice. J. Nutr. Biochem. 2020, 83, 108426.
 
[17]  Ferreira, P. S.; Spolidorio, L. C.; Manthey, J. A.; Cesar, T. B. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet. Food Funct. 2015, 15; 7(6): 2675-2681.
 
[18]  Cesar, T.; Salgaço, M.K.; Mesa, V.; Sartoratto, A.; Sivieri, K. Exploring the Association between Citrus Nutraceutical Eriocitrin and Metformin for Improving Pre-Diabetes in a Dynamic Microbiome Model. Pharmaceuticals (Basel). 2023 Apr 26; 16(5): 650.
 
[19]  Yang, F.; Chen, C.; Ni, D. R.; Yang, Y. B.; Tian, J. H.; Li, Y. Y.; Chen, S. G.; Ye, X. Q.; Wang, L. Effects of fermentation on bioactivity and the composition of polyphenols contained in polyphenol-rich foods: a review. Foods. 2023, 12: 3315.
 
[20]  Kim, S.S.; Park, K.J. An H.J., Choi Y.H. Phytochemical, antioxidant, and antibacterial activities of fermented Citrus unshiu byproduct. Food Sci Biotechnol. 2017; 26 (2): 461-466.
 
[21]  Lin, S.Y.; Roan, S.F.; Lee, C.L.; Chen, I.Z. Volatile organic components of fresh leaves as indicators of indigenous and cultivated citrus species in Taiwan. Biosci. Biotech. Biochem. 2010, 74(4): 806-11.
 
[22]  Bodnaruc, A. M.; Prud'homme, D.; Blanchet, R.; Giroux, I. 2016. Nutritional modulation of endogenous glucagon-like peptide-1 secretion: a review. Nutr. Metab. (Lond). 2016, 13: 92.
 
[23]  Yaribeygi, H.; Jamialahmadi, T.; Moallem, S. A.; Sahebkar, A. Boosting GLP-1 by natural products. Adv. Exp. Med. Biol. 2021, 1328: 513–522.
 
[24]  Balasubramanian, R.; Schneider, E.; Gunnigle, E.; Cotter, P. D.; Cryan, J. F. Fermented foods: harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neurosci. Biobehav. Rev. 2024, 158: 105562.
 
[25]  Khayatan, D.; Nouri, K.; Momtaz, S.; Roufogalis, B. D.; Alidadi, M.; Jamialahmadi, T.; Abdolghaffari, A. H.; Sahebkar, A. Plant-derived fermented products: an interesting concept for human health. Curr. Dev. Nutr. 2024, 8: 102162.
 
[26]  Zhang, W.; Wu, L.; Qu, R.; Liu, T.; Wang, J.; Tong, Y.; Bei, W.; Guo, J.; Hu, X. Hesperidin activates the GLP-1R/cAMP-CREB/IRS2/PDX1 pathway to promote transdifferentiation of islet α cells into β cells Across the spectrum. Heliyon. 2024, 2; 10(16): e35424.
 
[27]  Cesar, T.B.; Ramos, F.M.M.; Ribeiro, C.B. Nutraceutical Eriocitrin (Eriomin) Reduces Hyperglycemia by Increasing Glucagon-Like Peptide 1 and Downregulates Systemic Inflammation: A Crossover-Randomized Clinical Trial. J Med Food. 2022, 25 (11): 1050-1058.