Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2024, 12(3), 160-167
DOI: 10.12691/jfnr-12-3-8
Open AccessArticle

Larvicidal Potential of Pequi (Caryocar Brasiliense Cambess) in Aedes Aegypti (Diptera: Culicidae): An Ecological Alternative

Raquel da Silva Vieira1, , Eduardo José de Arruda2, Antônio Pancrácio de Souza3, Danilo Tófoli4, Rosângela Assis Jacques5, Patrick da Silva Mirowski3, Ana Cristina Jacobowski1, Maria Lígia Rodrigues Macedo1, Valter Aragão do Nascimento1, Rita de Cássia Avellaneda Guimarães1, Paulo Roberto Haidamus de Oliveira Bastos1 and Danielle Bogo1

1Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79079-900, Brazil

2Faculty of Exact Sciences and Technology (FACET), Federal University of Grande Dourados, UFGD, Dourados, MS, Brazil

3Federal University of Mato Grosso do Sul, UFMS, 79079-900, Campo Grande, MS, Brazil

4Federal Institute of Education, Science and Technology of Mato Grosso do Sul, IFMS, Coxim/MS, Brazil

5Federal University of Rio Grande do Sul, UFRS, 91501 – 970, Porto Alegre, RS, Brazil

Pub. Date: March 29, 2024

Cite this paper:
Raquel da Silva Vieira, Eduardo José de Arruda, Antônio Pancrácio de Souza, Danilo Tófoli, Rosângela Assis Jacques, Patrick da Silva Mirowski, Ana Cristina Jacobowski, Maria Lígia Rodrigues Macedo, Valter Aragão do Nascimento, Rita de Cássia Avellaneda Guimarães, Paulo Roberto Haidamus de Oliveira Bastos and Danielle Bogo. Larvicidal Potential of Pequi (Caryocar Brasiliense Cambess) in Aedes Aegypti (Diptera: Culicidae): An Ecological Alternative. Journal of Food and Nutrition Research. 2024; 12(3):160-167. doi: 10.12691/jfnr-12-3-8

Abstract

There is a need to find sustainable alternatives to control this arbovirus vector due the increasing resistance of Aedes aegypti to conventional chemical insecticides especially in tropical and subtropical countries. This study aims to evaluate the larvicidal potential of the Caryocar brasiliense fruit pulp as an eco-friendly alternative to the control of Aedes aegypti. Using mosquito third instar larvae, in vitro and in vivo toxicity tests were performed with the fruit pulp of Caryocar brasiliense. Larvicidal activity was observed at all concentrations tested, with no evidence of toxicity in vitro and in vivo, indicating safety for non-target organisms. The results suggest that the fatty esters present in the pulp of Caryocar brasiliense may be a promising alternative for the control of Aedes aegypti. These findings pave the way for further studies on the structure-activity relationship of natural molecules in combating mosquito-borne diseases.

Keywords:
Caryocar brasiliense fatty acids larvicidal activity bioactive molecules eco-friendly

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Silva, V.C., Scherer, P.O., Falcão, S.S., Alencar, J., Cunha, S.P., Rodrigues, I.M., Pinheiro, N.L. Diversidade de criadores e tipos de imóveis freqüentados por Aedes albopictus e Aedes aegypti. Revista de Saúde Pública, 40(6): 1106–11. 2006.
 
[2]  Getachew, D., Tekie, H., Gebre-Michael, T., Balkew, M., & Mesfin, A. Breeding Sites of Aedes aegypti: Potential Dengue Vectors in Dire Dawa, East Ethiopia. Interdisciplinary perspectives on infectious diseases, 2015, 706276. 2015.
 
[3]  Araújo, M.F.; Castanheira, E.M.S.; Sousa, S.F. The Buzz on Insecticides: A Review of Uses, Molecular Structures, Targets, Adverse Effects, and Alternatives. Molecules 2023, 28,3641. 2023.
 
[4]  Carvalho, K.S., Cruz, R.C.D., Souza, I.A. Plant species from Brazilian Caatinga: a control alternative for Aedes aegypti, Journal of Asia-Pacific Entomology, 26:102051. 2023.
 
[5]  Cordeiro, M.W.S., Cavallieri, Â.L.F., Ferri, P.H., Naves, M.M.V., Características físicas, composição químico-nutricional e dos óleos essenciais da polpa de Caryocar brasiliense nativo do estado de Mato Grosso. Revista Brasileira de Fruticultura, 35(4): 1127–39. 2013.
 
[6]  Silva, V.C., Ribeiro-Neto, J. A., Alves, S., Lima, L.A. Larvicidal activity of oils, fatty acids, and methyl esters from ripe and unripe fruit of Solanum lycocarpum (Solanaceae) against the vector Culex quinquefasciatus (Diptera: Culicidae). Revista da Sociedade Brasileira de Medicina Tropical, 48(5): 610–613. 2015.
 
[7]  Perumalsamy, H., Jang, M. J., Kim, J. R., Kadarkarai, M., & Ahn, Y. J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasites & vectors, 8, 237. 2015.
 
[8]  Santos, L.M.M., Nascimento, J.S., Santos, M.A.G., Marriel, N.B., Silva, P.C.B., Rocha, S.K.L., Silva, A.G., Correia, M.T.S., Paiva, P.M.G., Martins, G.F., Navarro, D.M.A.F., Silva, M.V., Napoleão, T.H. Fatty acid-rich volatile oil from Syagrus coronata seeds has larvicidal and oviposition-deterrent activities against Aedes aegypti. Physiological and Molecular Plant Pathology, 100: 35-40. 2017.
 
[9]  Orsavova, J., Misurcova, L., Ambrozova, J. V., Vicha, R., Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. International journal of molecular sciences, 16(6), 12871–12890. 2015.
 
[10]  Lomonaco, D., Santiago, G.M.P., Ferreira, Y.S., Arriaga, A.M.C., Mazzetto, S.E., Melec, G., Vasapollo, G. Study of technical CNSL and its main components as new green larvicides. Green Chemistry, 11:31–33. 2009.
 
[11]  Ahmed S, Shah P, Ahmed O. Biochemistry, Lipids. [Updated 2023 May 1]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https: // www.ncbi.nlm.nih.gov/ books/ NBK525952/.
 
[12]  Royal Society OF Chemistry – ChemSpider, 2024. [viewed 4 January 2024]. ChemSpider Search and share chemistry [online]. Available from: http://www.chemspider. com/.
 
[13]  World Health Organization. WHO, Guidelines for laboratory and field testing of mosquito larvicides. Genebra, Suíça. 2005.
 
[14]  Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mcmahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82(13):1107–1112. 1990.
 
[15]  Organisation for Economic Cooperation and Developmente (OECD) - Guidelines for the Testing of Chemicals, OECD 423. Acute Oral Toxicity-Acute Toxic Class Method. Paris: Organisation for Economic Cooperation and Development. 2001.
 
[16]  Monks, A., Scudiero, D., Skehan, P., Sapateiro, R., Paulo, K., Vistica, D., Mangueira, C., Langley, J., Cronise, P., Wolff, A.V. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83(11):757–766. 1991.
 
[17]  Clancy, I.L., Jones, R.T., Power, G.M. Iriart, J.A.B., Massad, E., Kinsman, J. Public health messages on arboviruses transmitted by Aedes aegypti in Brazil. BMC Public Health. 1362(2021). 2021.
 
[18]  Silvério, M. R. S., Espindola, L. S., Lopes, N. P., and Vieira, P. C. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules (Basel, Switzerland), 25(15), 3484. 2020.
 
[19]  Chemistry Library. Fatty Acids and Their Esters. Accessed on March 5, 2024. Available at: https:// chem.libretexts.org/ Courses/Saint_Francis_University/ Chem_114%3A_Human_Chemistry_II_(Muino)/23%3A_Lipids/ 23.02%3A_Fatty_Acids_and_Their_Esters.
 
[20]  Ribeiro-Neto, J.A., Alves, S.N. Lima, L.A.R.S. Fatty acid methyl esters (FAMEs) obtained from edible vegetable oils: Larvicidal activity and melanization process in Aedes aegypti larvae, Biocatalysis and Agricultural Biotechnology, 50:102689. 2023.
 
[21]  Mortensen, A., Aguilar, F., Crebelli, R., Di Domenico, A., Dusemund, B., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Leblanc, J. C., Lindtner, O., Moldeus, P., Mosesso, P., Parent-Massin, D., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., Wright, M. Lambré, C. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA journal. European Food Safety Authority, 15(7), e04910. 2017.
 
[22]  Melo, A. R., Pereira Garcia, I. J., Serrão, J. E., Santos, H. L., Rodrigues Dos Santos Lima, L. A., & Alves, S. N. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicology and environmental safety, 154, 1–5. 2018.
 
[23]  Silva, L. N., Ribeiro-Neto, J. A., Valadares, J. M., Costa, M. M., Lima, L. A., Grillo, L. A., Cortes, V. F., Santos, H. L., Alves, S. N., & Barbosa, L. A. The Influence of Fatty Acid Methyl Esters (FAMEs) in the Biochemistry and the Na(+)/K(+)-ATPase Activity of Culex quinquefasciatus Larvae. The Journal of membrane biology, 249(4), 459–467. 2016.
 
[24]  Sivakumar, R., Jebanesan, A., Govindarajan, M., Rajasekar, P. Larvicidal and repellent activity of tetradecanoic acid against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.) (Diptera:Culicidae). Asian Pacific Journal of Tropical Medicine. (2011):706-710. 2011.
 
[25]  Vanni, S.; Riccardi, L.; Palermo, G.; Vivo, M. Structure and Dynamics of the Acyl Chains in the Membrane Trafficking and Enzymatic Processing of Lipids. Accounts of Chemical Research, 52(11):3087-3096. 2019.
 
[26]  Claus, S.; Jezierska, S.; Inge, N. A.; Bogaert, V. Protein-facilitated transport of hydrophobic molecules across the yeast plasma membrane. FEBS Letters. 593(2019):1508–1527. 2019.
 
[27]  Camargo, A.; Martins, R.; Costa, F. Larvicidal Activity of Secondary Plant Metabolites in Aedes aegypti Control: An Overview of the Previous 6 Years. Natural Product Communications. 14(7): 1-11. 2019.
 
[28]  Bury NR, Codd GA, Wendelaar Bonga SE, Flik G. Ácidos graxos da cianobactéria Microcystis aeruginosa com potentes efeitos inibitórios na atividade Na+/K+-ATPase das guelras de peixes. J Exp Biol 1998; 201: 81-89.
 
[29]  Morohashi M, Tsuchiya K, Mita T, Kawamura M. Identificação do inibidor de (Na, K) ATPase em artémia, Artemia salina , como ácidos graxos de cadeia longa. J Comp Physiol B 161: 69-72. 1991.
 
[30]  Obaldia, M.E., Morita, T., Dedmon, L.C., Boehmler, D. J., Jiang, C.S., Zeledon, E.V., Cruz, J.R., Vosshall, L.B. Differential mosquito attraction to humans is associated with skin-derived carboxylic acid levels. Cell, 185(22): 4099–4116.e13. 2022.
 
[31]  Cantrell, C. L., Zaki, M. A., Reichley, A., Sink, M., Kim, S. J., Ali, A. Biting deterrency of undecanoic acid and dodecanoic acid ester analogs against Aedes aegypti. Pest management science, 77(8), 3737–3743. 2021.
 
[32]  Arruda, J.E., Biasotto, G., Beppu, M. M., Monteiro, F. J., Granja, P. L., Rangel, M., Leite, A., Cabrini, I., Santos, T., Gonçalves, D. A., Neitzke Abreu, H. C. Nano-encapsulated Cu(II) complex as a promising insecticidal for Aedes aegypti (Diptera: Culicidae). Heliyon, 10(1), e23198. 2023.
 
[33]  Olorunnisola, O.S., Bradley, G., Afolayan, A. J., Acute and sub-chronic toxicity studies of methanolic extract of Tulbaghia violacea rhizomes in Wistar rats. African Journal of Biotechnology.11(83):14934–14940. 2012.