[1] | Vascellari S, Palmas V, Melis M, et al. Gut microbiota and metabolome alterations associated with Parkinson’s Disease. mSystems. 2020;5(5): e00561-20. |
|
[2] | Baluchnejadmojarad T, Rabiee N, Zabihnejad S, Roghani M. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson's disease: Possible involvement of ERbeta/Nrf2/HO-1 signaling. Brain Res. 2017;1662:23-30. |
|
[3] | Zhai S, Tanimura A, Graves SM, Shen W, Surmeier DJ. Striatal synapses, circuits, and Parkinson's disease. Curr Opin Neurobiol. 2017;48:9-16. |
|
[4] | Wang YL, Ju B, Zhang YZ, et al. Protective Effect of Curcumin Against Oxidative Stress-Induced Injury in Rats with Parkinson's Disease Through the Wnt/ beta-Catenin Signaling Pathway. Cell Physiol Biochem. 2017;43(6):2226-2241. |
|
[5] | Kowal SL, Dall TM, Chakrabarti R, Storm MV, Jain A. The current and projected economic burden of Parkinson's disease in the United States. Mov Disord. 2013;28(3):311-8. |
|
[6] | Ishii T, Kinoshita KI, Muroi Y. Serotonin 5-HT4 Receptor Agonists Improve Facilitation of Contextual Fear Extinction in an MPTP-Induced Mouse Model of Parkinson's Disease. Int J Mol Sci. 2019;20(21). |
|
[7] | Lai F, Jiang R, Xie W, et al. Intestinal Pathology and Gut Microbiota Alterations in a Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Mouse Model of Parkinson's Disease. Neurochem Res. 2018;43(10):1986-1999. |
|
[8] | McCann H, Cartwright H, Halliday GM. Neuropathology of alpha-synuclein propagation and braak hypothesis. Mov Disord. 2016;31(2):152-160. |
|
[9] | Heiko Braak , Kelly Del Tredici, Udo Rüb, Rob A.I. de Vos, Ernst N.H. Jansen Steur, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197-211. |
|
[10] | Zhou B, Yuan Y, Zhang S, et al. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Front Immunol. 2020;11:575. |
|
[11] | Yang X, Liu L, Chen J, Xiao A. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice. Toxins (Basel). 2017;9(10). |
|
[12] | Lamouse-Smith ES, Tzeng A, Starnbach MN. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice. PLoS One. 2011;6(11):e27662. |
|
[13] | Ma Q, Li Y, Li P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019;117:109138. |
|
[14] | Wood H. Parkinson disease. Gut reactions--can changes in the intestinal microbiome provide new insights into Parkinson disease? Nat Rev Neurol. 2015;11(2):66. |
|
[15] | van ISCD, Derkinderen P. The Intestinal Barrier in Parkinson's Disease: Current State of Knowledge. J Parkinsons Dis. 2019;9(s2):S323-S329. |
|
[16] | Fang X. Microbial treatment: the potential application for Parkinson's disease. Neurol Sci. 2019;40(1):51-58. |
|
[17] | Holzer P, Farzi A. Neuropeptides and the microbiota-gut-brain axis. Adv Exp Med Biol. 2014;817:195-219. |
|
[18] | Holzer P, Reichmann F, Farzi A. Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides. 2012;46(6):261-274. |
|
[19] | Liu Z, Wang W, Huang T, et al. CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer's disease. PLoS One. 2019;14(9):e0222757. |
|
[20] | Sui R, Zang L, Bai Y. Administration of troxerutin and cerebroprotein hydrolysate injection alleviates cerebral ischemia/reperfusion injury by down-regulating caspase molecules. Neuropsychiatr Dis Treat. 2019;15:2345-2352. |
|
[21] | Zhang X, Liu J, Wu L, Wang Z, Zhang S. GbWRKY1, a member of the WRKY transcription factor family identified from Gossypium barbadense, is involved in resistance to Verticillium wilt. Biotechnology & Biotechnological Equipment. 2019;33(1):1354-1364. |
|
[22] | Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M. Antiapoptotic effects of the peptidergic drug Cerebrolysin on primary cultures of embryonic chick cortical neurons. J Neural Transm. 2001;108(4):459-473. |
|
[23] | Noor NA, Mohammed HS, Mourad IM, Khadrawy YA, Aboul Ezz HS. A promising therapeutic potential of cerebrolysin in 6-OHDA rat model of Parkinson's disease. Life Sciences. 2016;155:174-179. |
|
[24] | Zhou T, Zhu M, Liang Z. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson's disease. Mol Med Rep. 2018;17(4):4883-4888. |
|
[25] | Cao Q, Qin L, Huang F, et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol. 2017;319:80-90. |
|
[26] | Wan T, Wang Z, Luo Y, et al. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Protects against Oxidative Stress-Mediated Neuronal Cell Apoptosis and Scopolamine-Induced Cognitive Impairment by Activating Nrf2/HO-1 Signaling. Oxid Med Cell Longev. 2019;2019:8239642. |
|
[27] | Shamsaei N, Khaksari M, Erfani S, Rajabi H, Aboutaleb N. Exercise preconditioning exhibits neuroprotective effects on hippocampal CA1 neuronal damage after cerebral ischemia. Neural Regen Res. 2015;10(8):1245-1250. |
|
[28] | J. Gregory Caporaso, Christian L. Lauber, William A. Walters, Donna Berg-Lyons, Catherine A. Lozupone, Peter J. Turnbaugh, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4516-4522. |
|
[29] | Taylor TN, Greene JG, Miller GW. Behavioral phenotyping of mouse models of Parkinson's disease. Behav Brain Res. 2010;211(1):1-10. |
|
[30] | Jiang Q, Yan Z, Feng J. Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons. J Biol Chem. 2006;281(39):29391-29400. |
|
[31] | Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, et al. Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev. 2009;18(8):1179-1790. |
|
[32] | Hosp JA, Pekanovic A, Rioult-Pedotti MS, Luft AR. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci. 2011;31(7):2481-2487. |
|
[33] | Winogrodzka A, Bergmans P, Booij J, van Royen E, Stoof JC, Wolters EC. 123I]β-CIT SPECT is a useful method for monitoring dopaminergic degeneration in early stage Parkinson’s disease. J Neurol Neurosurg Psychiatry Investig. 2017;74:294-298. |
|
[34] | Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease. J Neurosci Methods. 2005;144(1):35-45. |
|
[35] | Becker A, Fassbender K, Oertel WH, Unger MM. A punch in the gut - Intestinal inflammation links environmental factors to neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord. 2019;60:43-5. |
|
[36] | Zhu G, Jiang Y, Yao Y, Wu N, Luo J, Hu M, et al. Ovotransferrin ameliorates the dysbiosis of immunomodulatory function and intestinal microbiota induced by cyclophosphamide. Food Funct. 2019;10(2):1109-1122. |
|
[37] | Chen X, Sun H, Jiang F, et al. Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ. 2020;8:e8317. |
|
[38] | Konya T, Koster B, Maughan H, et al. Associations between bacterial communities of house dust and infant gut. Environ Res. 2014;131:25-30. |
|
[39] | Bedarf JR, Hildebrand F, Coelho LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson's disease patients. Genome Med. 2017;9(1):39. |
|
[40] | Zhao F, Feng J, Li J, et al. Alterations of the Gut Microbiota in Hashimoto's Thyroiditis Patients. Thyroid. 2018;28(2):175-186. |
|