Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2023, 11(7), 491-499
DOI: 10.12691/jfnr-11-7-5
Open AccessArticle

Effect of Polygonatum Sibiricum Aqueous Extract on Gut Microflora of Type 2 Diabetic Mice

Fuding Zhou1, Jinchuan Yu1, Guangjun Wang2, Ting Wang1, Zhengxiang Liu1 and Wenjun Chen1,

1Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, China

2School of Public Health, Anhui Medical University, Hefei, China

Pub. Date: July 25, 2023

Cite this paper:
Fuding Zhou, Jinchuan Yu, Guangjun Wang, Ting Wang, Zhengxiang Liu and Wenjun Chen. Effect of Polygonatum Sibiricum Aqueous Extract on Gut Microflora of Type 2 Diabetic Mice. Journal of Food and Nutrition Research. 2023; 11(7):491-499. doi: 10.12691/jfnr-11-7-5


This study aimed to explore the protective effect of Polygonatum sibiricum aqueous extract (PSAE) on lipid metabolism in vivo. 72 mice were divided randomly into Polygonatum sibiricum polysaccharide (PSP) group, Control group, Model group, Low-, Medium-, and High-dose PSAE (0.5, 1, 2g/kg) groups, 12 mice in each group. In this experiment, 60% high-fat diets were used for 6 weeks. After 3 consecutive doses of 35mg/kg, an intraperitoneal injection of 1% streptozotocin (STZ) was used to induce type 2 diabetic mice (T2DM). Streptozotocin was dissolved in citric acid sodium citrate buffer solution in PH=4.4. Mice were treated with PSAE and PSP by gavage one week before modeling, and the gavage process lasted until the mice were killed. After one week of gavage treatment, the feeding diets of mice in the Model group, PSAE groups, and PSP group were all changed to a 60% high-fat diet. After feeding with a high-fat diet for 6 weeks, the mice were fasted overnight for 3 consecutive days and injected with 1% STZ intraperitoneally. The mice in the Control group were injected with the same volume of solvent as the same surgical control. The results showed that, compared to mice in the Model group, the levels of serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and liver triglyceride level were significantly decreased in the high-dose PSAE group. The composition and diversity of the gut microbiota were considerably altered by PSAE. In particular, high-dose PSAE lowered the relative abundance of the phyla Firmicutes and Bacteroidetes while increasing the relative abundance of the phylum Proteobacteria. At the genus level, high-dose PSAE decreased the relative abundance of Bacteroides, while significantly increasing the relative abundance of Parabacteroides and Alistipes. Besides, PSAE alleviated insulin resistance in type 2 diabetic mice. These results imply that PSAE may be a potential functional food for T2DM intervention by regulating gut microbiota and against lipid metabolism disorders.

type 2 diabetic Polygonatum sibiricum aqueous extract gut microflora

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


Figure of 10


[1]  Zhao, C., Yang, C., Wai, S. T. C., Zhang, Y., M, P. P., Paoli, P., Wu, Y., San Cheang, W., Liu, B., Carpéné, C., Xiao, J., Cao, H., “Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus,” Crit Rev Food Sci Nutr, 59(6). 830-847. 2019.
[2]  Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., Williams, R., “Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition,” Diabetes Res Clin Pract, 157. 107843. Nov. 2019.
[3]  Zhang, L., Chu, J., Hao, W., Zhang, J., Li, H., Yang, C., Yang, J., Chen, X., Wang, H., “Gut Microbiota and Type 2 Diabetes Mellitus: Association, Mechanism, and Translational Applications,” Mediators Inflamm, 5110276. Aug. 2021.
[4]  Hu, X., Wang, S., Xu, J., Wang, D. B., Chen, Y., Yang, G. Z., “Triterpenoid saponins from Stauntonia chinensis ameliorate insulin resistance via the AMP-activated protein kinase and IR/IRS-1/PI3K/Akt pathways in insulin-resistant HepG2 cells,” Int J Mol Sci, 15(6). 10446-10458. Jun. 2014.
[5]  Wang, J., He, Y., Yu, D., Jin, L., Gong, X., Zhang, B., “Perilla oil regulates intestinal microbiota and alleviates insulin resistance through the PI3K/AKT signaling pathway in type-2 diabetic KKAy mice,” Food Chem Toxicol, 135. 110965. Jan. 2020.
[6]  Chen, T., Zhang, Y., Liu, Y., Zhu, D., Yu, J., Li, G., Sun, Z., Wang, W., Jiang, H., Hong, Z., “MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling,” Aging (Albany NY), 11(18). 7510-7524. Sep. 2019.
[7]  Chen, S. H., Liu, X. N., Peng, Y., “MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus,” J Cell Mol Med, 23(9). 5895-5906. Sep. 2019.
[8]  Huang, X., Liu, G., Guo, J., Su, Z., “The PI3K/AKT pathway in obesity and type 2 diabetes,” Int J Biol Sci, 14(11). 1483-1496. Aug. 2018.
[9]  McCarthy, M. I., “Genetics of T2DM in 2016: Biological and translational insights from T2DM genetics,” Nat Rev Endocrinol, 13(2). 71-72. Feb. 2017.
[10]  Weng, J. P., Hu, G., “Diabetes: Leveraging the Tipping Point of the Diabetes Pandemic,” Diabetes, 66(6). 1461-1463. Jun. 2017.
[11]  Sampath Kumar, A., Maiya, A. G., Shastry, B. A., Vaishali, K., Ravishankar, N., Hazari, A., Gundmi, S., Jadhav, R., “Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis,” Ann Phys Rehabil Med, 62(2). 98-103. Mar. 2019.
[12]  Tanase, D. M., Gosav, E. M., Neculae, E., Costea, C. F., Ciocoiu, M., Hurjui, L. L., Tarniceriu, C. C., Maranduca, M. A., Lacatusu, C. M., Floria, M., Serban, I. L., “Role of Gut Microbiota on Onset and Progression of Microvascular Complications of Type 2 Diabetes (T2DM),” Nutrients, 12(12). Dec. 2020.
[13]  Zhang, H., Cao, Y., Chen, L., Wang, J., Tian, Q., Wang, N., Liu, Z., Li, J., Wang, N., Wang, X., Sun, P., Wang, L., “A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells,” Carbohydr Polym, 117. 879-886. Mar. 2015.
[14]  Yelithao, K., Surayot, U., Lee, J. H., You, S., “RAW264.7 Cell Activating Glucomannans Extracted from Rhizome of Polygonatum sibiricum,” Prev Nutr Food Sci, 21(3). 245-254. Sep. 2016.
[15]  Zhao, P., Zhao, C., Li, X., Gao, Q., Huang, L., Xiao, P., Gao, W., “The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology,” J Ethnopharmacol, 214. 274-291. Mar. 2018.
[16]  Liu, X., Yi, H., Yao, L., Ma, H., Zhang, J., Wang, Z., “Advances in plants of Polygonatum and discussion of its development prospects,” Chin. Pharm, 52. 530-534. 2017.
[17]  Li, L., Tian, L., Ren, Z., Long, Z., “Research progress on the structural analysis and functional activity of polysaccharides,” Chin. J. Exp. Tradit. Med. Fromul, 21(15). 231-234. 2015.
[18]  Liu, N., Dong, Z., Zhu, X., Xu, H., Zhao, Z., “Characterization and protective effect of Polygonatum sibiricum polysaccharide against cyclophosphamide-induced immunosuppression in Balb/c mice,” Int J Biol Macromol, 107(Pt A). 796-802. Feb. 2018.
[19]  Zhao, X., Li, J., “Chemical constituents of the genus Polygonatum and their role in medicinal treatment,” Nat Prod Commun, 10(4). 683-688. Apr. 2015.
[20]  Shi, X., Li, P., Wei, Y., Li, B., Wang, D., Xu, T., “Research progress on extraction and purifification technologies and pharmacological effects of Polygonatum polysaccharide: A review,” Guid. J. Tradit. Chin. Med. Pharm, 21. 103-105. 2015.
[21]  Zhang, H. Y., Hu, W. C., Ma, G. X., Zhu, N. L., Sun, X. B., Wu, H. F., Xu, X. D., “A new steroidal saponin from Polygonatum sibiricum,” J Asian Nat Prod Res, 20(6). 586-592. Jun. 2018.
[22]  Zong, S., Zeng, G., Zou, B., Li, K., Fang, Y., Lu, L., Xiao, D., Zhang, Z., “Effects of Polygonatum sibiricum polysaccharide on the osteogenic differentiation of bone mesenchymal stem cells in mice,” Int J Clin Exp Pathol, 8(6). 6169-6180. Jun. 2015.
[23]  Chen, H., Li, Y. J., Li, X. F., Sun, Y. J., Li, H. W., Su, F. Y., Cao, Y. G., Zhang, Y. L., Zheng, X. K., Feng, W. S., “Homoisoflavanones with estrogenic activity from the rhizomes of Polygonatum sibiricum,” J Asian Nat Prod Res, 20(1). 92-100. Jan. 2018.
[24]  Hu, C. Y., Xu, D. P., Wu, Y. M., Ou, S. Y., “Triterpenoid saponins from the rhizome of Polygonatum sibiricum,” J Asian Nat Prod Res, 12(9). 801-808. Sep. 2010.
[25]  Zhai, L., Wang, X., “Syringaresinol-di-O-β-D-glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin‑induced mouse model of diabetes,” Mol Med Rep, 18(6). 5511-5519. Dec. 2018.
[26]  Kato, A., Miura, T., “Hypoglycemic action of the rhizomes of Polygonatum officinale in normal and diabetic mice,” Planta Med, 60(3). 201-203. Jun. 1994.
[27]  Kato, A., Miura, T., “Hypoglycemic activity of polygonati rhizoma in normal and diabetic mice,” Biol Pharm Bull, 16(11). 1118-1120. Nov. 1993.
[28]  Wang, G., Fu, Y., Li, J., Li, Y., Zhao, Q., Hu, A., Xu, C., Shao, D., Chen, W., “Aqueous extract of Polygonatum sibiricum ameliorates ethanol-induced mice liver injury via regulation of the Nrf2/ARE pathway,” J Food Biochem, 45(1). e13537. Jan. 2021.
[29]  Wang, G., Liu, Z., Liang, D., Yu, J., Wang, T., Zhou, F., Chen, W., “Aqueous extract of Polygonatum sibiricum ameliorates glucose and lipid metabolism via PI3K/AKT signaling pathway in high-fat diet and streptozotocin-induced diabetic mice,” J Food Biochem, 46(12). e14402. Dec. 2022.
[30]  Luo, S., Zhang, X., Huang, S., Feng, X., Zhang, X., Xiang, D., “A monomeric polysaccharide from Polygonatum sibiricum improves cognitive functions in a model of Alzheimer's disease by reshaping the gut microbiota,” Int J Biol Macromol, 213. 404-415. Jul. 2022.
[31]  Li, Q., Wu, W., Fang, X., Chen, H., Han, Y., Liu, R., Niu, B., Gao, H., “Structural characterization of a polysaccharide from bamboo (Phyllostachys edulis) shoot and its prevention effect on colitis mouse,” Food Chem, 387. 132807. Sep. 2022.
[32]  Liu, J., Liu, J., Liu, L., Zhang, G., Zhou, A., Peng, X., “The gut microbiota alteration and the key bacteria in Astragalus polysaccharides (APS)-improved osteoporosis,” Food Res Int, 138(Pt B). 109811. Dec. 2020.
[33]  Liang, F., Lu, X., Deng, Z., Zhong, H. J., Zhang, W., Li, Q., Zhou, H. H., Liou, Y. L., He, X. X., “Effect of Washed Microbiota Transplantation on Patients With Dyslipidemia in South China,” Front Endocrinol (Lausanne), 13. 827107. Apr. 2022.
[34]  Ling, Z., Liu, X., Cheng, Y., Yan, X., Wu, S., “Gut microbiota and aging,” Crit Rev Food Sci Nutr, 62(13). 3509-3534. 2022.
[35]  Conway, J., N, A. D., “Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing,” Ageing Res Rev, 68. 101323. Jul. 2021.
[36]  Dong, J., Liang, Q., Niu, Y., Jiang, S., Zhou, L., Wang, J., Ma, C., Kang, W., “Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota,” Int J Biol Macromol, 159. 725-738. Sep. 2020.
[37]  Zhao, D., Cao, J., Jin, H., Shan, Y., Fang, J., Liu, F., “Beneficial impacts of fermented celery (Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice,” Food Funct, 12(19). 9151-9164. Oct. 2021.
[38]  Liu, J., Ye, T., Zhang, Y., Zhang, R., Kong, Y., Zhang, Y., Sun, J., “Protective Effect of Ginkgolide B against Cognitive Impairment in Mice via Regulation of Gut Microbiota,” J Agric Food Chem, 69(41). 12230-12240. Oct. 2021.