Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2023, 11(7), 465-473
DOI: 10.12691/jfnr-11-7-2
Open AccessArticle

Rosa Roxburghii Fruit Pomace Polyphenol Extract Affects Plasma Metabolome and Gut Microbiota in Type 2 Diabetic Mice

Hui Wang1, 2, Kang Chen3, Mingxiu Long4, Jingwen Luo2, Zhaojun Chen2, Mei Wang2, Xiaoai Chen2, Shan Huang2, Xin Zhang5, Tingyuan Ren5, Shuangxue Wu5, Jienan Lou5 and Shuming Tan1, 5,

1Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China

2Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China

3Food Sciences, Department of Life Technology, University of Turku, FI-20014 Turun yliopisto, Finland

4Guizhou Research Institute of Modern Agricultural Development, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China

5Key Laboratory of Agricultural and Animal Products Storage and Processing of Guizhou Province, College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China

Pub. Date: July 11, 2023

Cite this paper:
Hui Wang, Kang Chen, Mingxiu Long, Jingwen Luo, Zhaojun Chen, Mei Wang, Xiaoai Chen, Shan Huang, Xin Zhang, Tingyuan Ren, Shuangxue Wu, Jienan Lou and Shuming Tan. Rosa Roxburghii Fruit Pomace Polyphenol Extract Affects Plasma Metabolome and Gut Microbiota in Type 2 Diabetic Mice. Journal of Food and Nutrition Research. 2023; 11(7):465-473. doi: 10.12691/jfnr-11-7-2

Abstract

Rosa roxburghii fruit pomace, rich in polyphenols, is an underutilized by-product in food processing. Polyphenols have been reported to have anti-diabetic properties. In this study, LC-MS metabolomics and 16S rRNA gene sequencing were used to study the effect of Rosa roxburghii fruit pomace polyphenols extract (RPPE) on plasma metabolites and gut microbiota in type 2 diabetic mice. RPPE was fed to diabetic mice at a daily dose of 400 mg/kg body weight for 8 weeks. Feeding RPPE decreased plasma glucose and proinflammatory cytokines and improved insulin sensitivity and plasma lipid profile. Oxidative stress biomarkers and inflammatory cytokines in colon were decreased by RPPE. For plasma metabolites, RPPE decreased p-cresol sulfate level and increased myristoleic acid, myristic acid, and palmitoleic acid levels, suggesting improved glucose and lipid metabolism as well as insulin resistance. Furthermore, RPPE upregulated abundance of beneficial microbes Lachnospiraceae and Erysipelotrichaceae and downregulate levels of detrimental microbes Faecalibaculum, Romboutsia, and Coriobacteriaceae. These results suggest that RPPE delays the development of type 2 diabetes via modulation of the inflammation, oxidative stress, plasma metabolites and gut microbiota.

Keywords:
type 2 diabetes Rosa roxburghii fruit pomace metabolomics

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  E. Burgos-Morón, Z. Abad-Jiménez, A. M. de Marañón, F. Iannantuoni, I. Escribano-López, S. López-Domènech, C. Salom, A. Jover, V. Mora, I. Roldan, E. Solá, M. Rocha, V. M. Víctor, J Clin Med 2019, 8, DOI 10.3390/JCM8091385.
 
[2]  M. Roden, G. I. Shulman, Nature 2019, 576, 51–60.
 
[3]  S. Gregersen, D. Samocha-Bonet, L. K. Heilbronn, L. v. Campbell, J Nutr Metab 2012, 2012, DOI 10.1155/2012/238056.
 
[4]  Z. Bahadoran, 2013, 12, 1–9.
 
[5]  L. T. Wang, M. J. Lv, J. Y. An, X. H. Fan, M. Z. Dong, S. D. Zhang, J. D. Wang, Y. Q. Wang, Z. H. Cai, Y. J. Fu, Food Funct 2021, 12, 1432–1451.
 
[6]  M. v. Selma, J. C. Espín, F. A. Tomás-Barberán, J Agric Food Chem 2009, 57, 6485–6501.
 
[7]  F. A. Tomás-Barberán, M. v. Selma, J. C. Espín, Curr Opin Clin Nutr Metab Care 2016, 19, 471–476.
 
[8]  D. Huang, C. Li, Q. Chen, X. Xie, X. Fu, C. Chen, Q. Huang, Z. Huang, H. Dong, Food Chem 2022, 377, 131922.
 
[9]  J. Y. He, Y. H. Zhang, N. Ma, X. L. Zhang, M. H. Liu, W. M. Fu, J Funct Foods 2016, 27, 29–41.
 
[10]  R. García‐Villalba, J. A. Giménez‐Bastida, A. Cortés‐Martín, M. Á. Ávila‐Gálvez, F. A. Tomás‐Barberán, M. V. Selma, J. C. Espín, A. González‐Sarrías, Mol Nutr Food Res 2022, 2101019.
 
[11]  X. L. Huang, Y. He, L. L. Ji, K. Y. Wang, Y. L. Wang, D. F. Chen, Y. Geng, P. OuYang, W. M. Lai, Oncotarget 2017, 8, 101545.
 
[12]  H. Wang, Z. Chen, M. Wang, M. Long, T. Ren, C. Chen, X. Dai, S. Yang, S. Tan, 2022.
 
[13]  G. M. Douglas, V. J. Maffei, J. R. Zaneveld, S. N. Yurgel, J. R. Brown, C. M. Taylor, C. Huttenhower, M. G. I. Langille, Nature Biotechnology 2020 38:6 2020, 38, 685–688.
 
[14]  J. Liu, D. Xu, S. Chen, F. Yuan, L. Mao, Y. Gao, Food Sci Nutr 2021, 9, 6892–6902.
 
[15]  N. Zmora, S. Bashiardes, M. Levy, E. Elinav, Cell Metab 2017, 25, 506–521.
 
[16]  X. Wang, Z. F. Zhang, G. H. Zheng, A. M. Wang, C. H. Sun, S. P. Qin, J. Zhuang, J. Lu, D. F. Ma, Y. L. Zheng, Molecules 2017, 22.
 
[17]  Y. Luo, J. L. Fang, K. Yuan, S. H. Jin, Y. Guo, J Funct Foods 2019, 59, 223–233.
 
[18]  N. Eltahawy, A. A. El-Hady, M. Badawi, A. Hammad, Indian Journal of Pharmaceutical Education and Research 2017, 51, 588–596.
 
[19]  Y. Wang, Y. Chen, X. Zhang, Y. Lu, H. Chen, J Funct Foods 2020, 75, 104248.
 
[20]  Chen, H. Chen, M. Faas, Mol Nutr Food Res 2017, 357, 201–207.
 
[21]  R. Medzhitov, Nature 2008, 454, 428–435.
 
[22]  E. B. Kurutas, Nutrition Journal 2016 15:1 2016, 15, 1–22.
 
[23]  U. Unluturk, T. Erbas, Molecular and Integrative Toxicology 2015, 147–171.
 
[24]  C. Cangiano, A. Laviano, M. del Ben, I. Preziosa, F. Angelico, A. Cascino, F. Rossi-Fanelli, Int J Obes Relat Metab Disord 1998, 22, 648–654.
 
[25]  E. Sokolowska, A. Blachnio-Zabielska, Front Endocrinol (Lausanne) 2019, 10, 577.
 
[26]  B. C. Field, R. Gordillo, P. E. Scherer, Front Endocrinol (Lausanne) 2020, 11, 763.
 
[27]  D. L. Gorden, D. S. Myers, P. T. Ivanova, E. Fahy, M. R. Maurya, S. Gupta, J. Min, N. J. Spann, J. G. McDonald, S. L. Kelly, J. Duan, M. C. Sullards, T. J. Leiker, R. M. Barkley, O. Quehenberger, A. M. Armando, S. B. Milne, T. P. Mathews, M. D. Armstrong, C. Li, W. v. Melvin, R. H. Clements, M. K. Washington, A. M. Mendonsa, J. L. Witztum, Z. Guan, C. K. Glass, R. C. Murphy, E. A. Dennis, A. H. Merrill, D. W. Russell, S. Subramaniam, H. A. Brown, J Lipid Res 2015, 56, 722–736.
 
[28]  M. Apostolopoulou, R. Gordillo, C. Koliaki, S. Gancheva, T. Jelenik, E. de Filippo, C. Herder, D. Markgraf, F. Jankowiak, I. Esposito, M. Schlensak, P. E. Scherer, M. Roden, Diabetes Care 2018, 41, 1235–1243.
 
[29]  L. Koppe, N. J. Pillon, R. E. Vella, M. L. Croze, C. C. Pelletier, S. Chambert, Z. Massy, G. Glorieux, R. Vanholder, Y. Dugenet, H. A. Soula, D. Fouque, C. O. Soulage, Journal of the American Society of Nephrology 2013, 24, 88–99.
 
[30]  L. Koppe, P. M. Alix, M. L. Croze, S. Chambert, R. Vanholder, G. Glorieux, D. Fouque, C. O. Soulage, Nephrology Dialysis Transplantation 2017, 32, 2000–2009.
 
[31]  Q. Ban, X. Sun, Y. Jiang, J. Cheng, M. Guo, J Dairy Sci 2022, 105, 3758–3769.
 
[32]  L. H. Quan, C. Zhang, M. Dong, M. Dong, J. Jiang, H. Xu, C. Yan, X. Liu, H. Zhou, H. Zhou, H. Zhang, H. Zhang, L. Chen, L. Chen, F. L. Zhong, Z. B. Luo, S. M. Lam, G. Shui, D. Li, W. Jin, W. Jin, Gut 2020, 69, 1239–1247.
 
[33]  E. R. Araujo Nunes, Implications of Palmitoleic Acid (Palmitoleate) On Glucose Homeos...: Ingenta Connect, Bentham Science Publishers 2017.
 
[34]  T. Takato, K. Iwata, C. Murakami, Y. Wada, F. Sakane, Diabetologia 2017, 60, 2076–2083.
 
[35]  S. Sakiyama, T. Usuki, H. Sakai, F. Sakane, Lipids 2014, 49, 633–640.
 
[36]  F. Magne, M. Gotteland, L. Gauthier, A. Zazueta, S. Pesoa, P. Navarrete, R. Balamurugan, Nutrients 2020, Vol. 12, Page 1474 2020, 12, 1474.
 
[37]  N. R. Dash, M. T. al Bataineh, M. Tahseen, A. Bataineh, Diabetes Metab J 2020, 45, 77–85.
 
[38]  A. Gotoh, M. Nara, Y. Sugiyama, M. Sakanaka, H. Yachi, A. Kitakata, A. Nakagawa, H. Minami, S. Okuda, T. Katoh, T. Katayama, S. Kurihara, Biosci Biotechnol Biochem 2017, 81, 2009–2017.
 
[39]  K. Chen, X. Wei, M. Kortesniemi, R. Pariyani, Y. Zhang, B. Yang, Food Research International 2022, 153, 110978.
 
[40]  M. Remely, E. Aumueller, D. Jahn, B. Hippe, H. Brath, A. G. Haslberger, Benef Microbes 2014, 5, 33–43.
 
[41]  Q. Zeng, D. Li, Y. He, Y. Li, Z. Yang, X. Zhao, Y. Liu, Y. Wang, J. Sun, X. Feng, F. Wang, J. Chen, Y. Zheng, Y. Yang, X. Sun, X. Xu, D. Wang, T. Kenney, Y. Jiang, H. Gu, Y. Li, K. Zhou, S. Li, W. Dai, Scientific Reports 2019 9:1 2019, 9, 1–10.
 
[42]  K. Nirmalkar, S. Murugesan, M. L. Pizano-Zárate, L. E. Villalobos-Flores, C. García-González, R. M. Morales-Hernández, J. A. Nuñez-Hernández, F. Hernández-Quiroz, M. D. S. Romero-Figueroa, C. Hernández-Guerrero, C. Hoyo-Vadillo, J. García-Mena, Nutrients 2018, Vol. 10, Page 2009 2018, 10, 2009.
 
[43]  A. Moya-Pérez, A. Neef, Y. Sanz, PLoS One 2015, 10, 1–28.
 
[44]  S. Mrozinska, P. Kapusta, T. Gosiewski, A. Sroka-Oleksiak, A. H. Ludwig-Słomczyńska, B. Matejko, B. Kiec-Wilk, M. Bulanda, M. T. Malecki, P. P. Wolkow, T. Klupa, Microorganisms 2021, 9, 1–13.
 
[45]  Y. P. Hou, Q. Q. He, H. M. Ouyang, H. S. Peng, Q. Wang, J. Li, X. F. Lv, Y. N. Zheng, S. C. Li, H. L. Liu, A. H. Yin, Biomed Res Int 2017, 2017.
 
[46]  J. Deutscher, C. Francke, P. W. Postma, Microbiol Mol Biol Rev 2006, 70, 939–1031.