[1] | Cruciani, S., Delitala, A.P., Cossu, M.L., Ventura, C., Maioli, M., “Management of obesity and obesity-related disorders: From stem cells and epigenetics to its treatment,” Int. J. Mol. Sci., 24 (3). 2310. Jan.2023. |
|
[2] | Bonaccio, M., Di Castelnuovo, A., Pounis, G., De Curtis, A., et al., “A score of low-grade inflammation and risk of mortality: prospective findings from the Moli-sani study,” Haematologica, 101 (11). 1434-1441. Nov.2016. |
|
[3] | Zhao, Y., Zou, W., Du, J., Zhao, Y., “The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation,” Journal of cellular physiology, 233 (10). 6425-6439. Oct.2018. |
|
[4] | Zheng, C., Yang, Q., Cao, J., Xie, N., et al., “Local proliferation initiates macrophage accumulation in adipose tissue during obesity,” Cell Death Dis, 7 e2167. Mar 31.2016. |
|
[5] | Bu, L., Gao, M., Qu, S., Liu, D., “Intraperitoneal injection of clodronate liposomes eliminates visceral adipose macrophages and blocks high-fat diet-induced weight gain and development of insulin resistance,” AAPS J, 15 (4). 1001-1011. Oct.2013. |
|
[6] | Lee, T. A., Bartle, B., Weiss, K. B., “Impact of NSAIDS on mortality and the effect of preexisting coronary artery disease in US veterans,” Am J Med, 120 (1). 98 e99-16. Jan.2007. |
|
[7] | Pollack, R. M., Donath, M. Y., LeRoith, D., Leibowitz, G., “Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications,” Diabetes Care, 39 Suppl 2 S244-252. Aug.2016. |
|
[8] | Gislason, G. H., Rasmussen, J. N., Abildstrom, S. Z., Schramm, T. K., et al., “Increased mortality and cardiovascular morbidity associated with use of nonsteroidal anti-inflammatory drugs in chronic heart failure,” Arch Intern Med, 169 (2). 141-149. Jan 26. 2009. |
|
[9] | Williams, E. J., Baines, K. J., Berthon, B. S., Wood, L. G., “Effects of an encapsulated fruit and vegetable juice concentrate on obesity-induced systemic inflammation: A randomized controlled trial,” Nutrients, 9(2). 116. Feb 8.2017. |
|
[10] | Hill, A. A., Anderson-Baucum, E. K., Kennedy, A. J., Webb, C. D., et al., “Activation of NF-kappaB drives the enhanced survival of adipose tissue macrophages in an obesogenic environment,” Mol Metab, 4 (10). 665-677. Oct.2015. |
|
[11] | Boutens, L., Stienstra, R., “Adipose tissue macrophages: going off track during obesity,” Diabetologia, 59 (5). 879-894. May.2016. |
|
[12] | Giridharan, S., Srinivasan, M., “Mechanisms of NF-kappaB p65 and strategies for therapeutic manipulation,” J Inflamm Res, 11 407-419. 2018. |
|
[13] | Barish, G. D., Yu, R. T., Karunasiri, M., Ocampo, C. B., et al., “Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response,” Genes & development, 24 (24). 2760-2765. Dec 15.2010. |
|
[14] | Viatour, P., Merville, M. P., Bours, V., Chariot, A., “Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation,” Trends Biochem Sci, 30 (1). 43-52. Jan.2005. |
|
[15] | Jiao, Z., Chang, J., Li, J., Nie, D., et al., “Sulforaphane increases Nrf2 expression and protects alveolar epithelial cells against injury caused by cigarette smoke extract,” Molecular medicine reports, 16 (2). 1241-1247. Aug.2017. |
|
[16] | Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., et al., “Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women,” Journal of the Academy of Nutrition and Dietetics, 114 (5). 700-708 e702. May.2014. |
|
[17] | Chen, G. C., Koh, W. P., Yuan, J. M., Qing, L. Q., Dam, R. M., “Green leafy and cruciferous vegetable consumption and risk of type 2 diabetes: results from the Singapore Chinese Health Study and meta-analysis,” Br J Nutr, 119(9). 1057-1067. Feb.2018. |
|
[18] | Nagata, N., Xu, L., Kohno, S., Ushida, Y., et al., “Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice,” Diabetes, 66 (5). 1222-1236. May.2017. |
|
[19] | Lin, W., Wu, R. T., Wu, T., Khor, T. O., et al., “Sulforaphane suppressed LPS-induced inflammation in mouse peritoneal macrophages through Nrf2 dependent pathway,” Biochemical pharmacology, 76 (8). 967-973. Oct 15.2008. |
|
[20] | Li, Y., Zhang, T., Li, X., Zou, P., et al., “Kinetics of sulforaphane in mice after consumption of sulforaphane-enriched broccoli sprout preparation,” Molecular nutrition & food research, 57 (12). 2128-2136. Dec.2013. |
|
[21] | Ruhee, R. T., Ma, S., Suzuki, K., “Sulforaphane Protects Cells against Lipopolysaccharide-Stimulated Inflammation in Murine Macrophages,” Antioxidants, 8 (12). Nov 21.2019. |
|
[22] | Lee, O. H., Kwon, Y. I., Apostolidis, E., Shetty, K., Kim, Y. C., “Rhodiola-induced inhibition of adipogenesis involves antioxidant enzyme response associated with pentose phosphate pathway,” Phytotherapy research: PTR, 25 (1). 106-115. Jan.2011. |
|
[23] | Winkler, A. R., Nocka, K. N., Williams, C. M., “Smoke exposure of human macrophages reduces HDAC3 activity, resulting in enhanced inflammatory cytokine production,” Pulm Pharmacol Ther, 25 (4). 286-292. Aug.2012. |
|
[24] | Aung, H. T., Schroder, K., Himes, S. R., Brion, K., et al., “LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression,” FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 20 (9). 1315-1327. Jul.2006. |
|
[25] | Myzak, M. C., Dashwood, W. M., Orner, G. A., Ho, E., Dashwood, R. H., “Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc-minus mice,” FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 20 (3). 506-508. Mar.2006. |
|
[26] | Ito, K., Barnes, P. J., Adcock, I. M., “Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12,” Molecular and cellular biology, 20 (18). 6891-6903. Sep. |
|