Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2023, 11(1), 57-62
DOI: 10.12691/jfnr-11-1-6
Open AccessArticle

Therapeutic Efficacy of Chrysoeriol on Doxorubicin-induced Liver Damage by Improving Biochemical and Histological Profile in Rats

Muhammad Umar Ijaz1, , Tahreem Fatima1, Moazama Batool2, Rabia Azmat1, Ambreen Sadaf1, Namra Ghafoor1 and Mehrab Khalil1

1Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan

2Department of Zoology, Govt. College Women University, Sialkot, Pakistan

Pub. Date: January 10, 2023

Cite this paper:
Muhammad Umar Ijaz, Tahreem Fatima, Moazama Batool, Rabia Azmat, Ambreen Sadaf, Namra Ghafoor and Mehrab Khalil. Therapeutic Efficacy of Chrysoeriol on Doxorubicin-induced Liver Damage by Improving Biochemical and Histological Profile in Rats. Journal of Food and Nutrition Research. 2023; 11(1):57-62. doi: 10.12691/jfnr-11-1-6

Abstract

Doxorubicin (DOX) is a commonly prescribed, potent anti-cancer drug, however, its clinical administration is restricted due to its serious organotoxic potential especially hepatotoxicity. Chrysoeriol (CSR) is a natural flavonoid, which exhibits putative antioxidant and free-radical scavenging activities. This research was planned to assess the hepatoprotective potential of CSR against DOX-prompted hepatic damage in male albino rats. 48 rats were segregated into four group viz. Control, DOX-treated group (3 mgkg-1), DOX + CSR-treated group (3 mgkg-1 + 20 mgkg-1) and CSR-treated group (20 mgkg-1). DOX treatment induced liver toxicity as indicated by the significant elevation in the serum levels of alanine aminotransferase (ALT) alkaline phosphatase (ALP), and aspartate aminotransferase (AST). Additionally, DOX exposure disrupted the biochemical profile by decreasing the activities of antioxidant enzymes i.e., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), glutathione reductase (GSR) and glutathione S-transferase (GST), while raised the levels of ROS and MDA. Furthermore, inflammatory markers level such as nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6) as well as Cyclooxygenase-2 (COX-2) activity were also increased. Besides the level of pro-apoptotic markers i.e., Bax, Caspase-3 and Caspase-9 were raised, while the level of anti-apoptotic protein, Bcl-2 was reduced following the DOX intoxication. In DOX-treated rats, Histopathological observation indicated substantial hepatic tissue damage. However co-treatment with chrysoeriol remarkably reversed all the aforementioned hepatic damages. CSR demonstrated promising hepatoprotective potential through exerting antioxidant, anti-inflammatory and anti-apoptotic properties.

Keywords:
doxorubicin chrysoeriol liver toxicity inflammation antioxidants

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Rivankar, S. (2014). An overview of doxorubicin formulations in cancer therapy. Journal of cancer research and therapeutics, 10: 853.
 
[2]  Sirwi, A., Shaik, R. A., Alamoudi, A. J., Eid, B. G., Kammoun, A. K., Ibrahim, S. R. M., Mohamed, G. A., Abdallah, H. M., & Abdel-Naim, A. B. (2021). Mokko Lactone Attenuates Doxorubicin-Induced Hepatotoxicity in Rats: Emphasis on Sirt-1/FOXO1/NF-κB Axis. Nutrients 13: 4142.
 
[3]  Barakat, B. M., Ahmed, H. I., Bahr, H. I., &Elbahaie, A. M. (2018). Protective effect of boswellic acids against doxorubicin-induced hepatotoxicity: impact on Nrf2/HO-1 defense pathway. Oxidative Medicine and Cellular Longevity, 2018.
 
[4]  Guzel, E. E., &Tektemur, N. K. (2021). Hesperetin may alleviate the development of doxorubicin-induced pulmonary toxicity by decreasing oxidative stress and apoptosis in male rats. Tissue and Cell 73: 101667.
 
[5]  Qi, W., Boliang, W., Xiaoxi, T., Guoqiang, F., Jianbo, X., & Gang, W. (2020). Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomedicine & Pharmacotherapy 122: 109547.
 
[6]  Hozayen, W. G., Seif, H. S. A., & Amin, S. (2014). Protective effects of Ruitn and/or hesperidin against doxorubicin-induced hepatotoxicity. International Journal of Clinical Nutrition, 2: 11-17.
 
[7]  Mansouri, E.; Jangaran, A.; Ashtari, A. Protective effect of pravastatin on doxorubicin-induced hepatotoxicity. Bratisl. Lek. Listy 2017, 118, 273-277
 
[8]  Damodar, G., Smitha, T., Gopinath, S., Vijayakumar, S., &Rao, Y. A. (2014). An evaluation of hepatotoxicity in breast cancer patients receiving injection Doxorubicin. Annals of Medical and Health Sciences Research 4: 74-79.
 
[9]  Jacevic, V., Djordjevic, A., Srdjenovic, B., Milic-Tores, V., Segrt, Z., Dragojevic-Simic, V., &Kuca, K. (2017). Fullerenol nanoparticles prevents doxorubicin-induced acute hepatotoxicity in rats. Experimental and Molecular Pathology 102: 360-369.
 
[10]  Mansouri, E., Jangaran, A., & Ashtari, A. (2017). Protective effect of pravastatin on doxorubicin-induced hepatotoxicity. Bratislavske Lekarske Listy 118: 273-277.
 
[11]  Song, S., Chu, L., Liang, H., Chen, J., Liang, J., Huang, Z., Zhang, B., & Chen, X. (2019). Protective effects of dioscin against doxorubicin-induced hepatotoxicity via regulation of Sirt1/FOXO1/NF-κb signal. Frontiers in Pharmacology 10: 1030.
 
[12]  Butt, M. S., & Sultan, M. T. (2009). Green tea: nature’s defense against malignancies. Critical Reviews in Food Science and Nutrition 49: 463-473.
 
[13]  Siró, I., Kápolna, E., Kápolna, B., &Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance—A review. Appetite 51: 456-467.
 
[14]  Oh, S.-Y., & Hyun, C.-G. (2022). Chrysoeriol Enhances Melanogenesis in B16F10 Cells Through the Modulation of the MAPK, AKT, PKA, and Wnt/β-Catenin Signaling Pathways. Natural Product Communications 17: 1934578X211069204.
 
[15]  Wu, J.-Y., Chen, Y.-J., Bai, L., Liu, Y.-X., Fu, X.-Q., Zhu, P.-L., Li, J.-K., Chou, J.-Y., Yin, C.-L., & Wang, Y.-P. (2020). Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. Phytomedicine 68: 153173.
 
[16]  Zhe, L., SONG, X., Ying, X., WANG, X., Hui, Y., BAI, Y., LIU, J., ZHANG, C., & HUI, R. (2009). Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicityin vitro. Chinese Medical Journal 122: 2652-2656.
 
[17]  Limboonreung, T., Tuchinda, P., &Chongthammakun, S. (2020). Chrysoeriol mediates mitochondrial protection via PI3K/Akt pathway in MPP+ treated SH-SY5Y cells. Neuroscience Letters 714: 134545.
 
[18]  Kim, M. H., Kwon, S. Y., Woo, S.-Y., Seo, W. D., & Kim, D. Y. (2021). Antioxidative effects of chrysoeriol via activation of the Nrf2 signaling pathway and modulation of mitochondrial function. Molecules 26: 313.
 
[19]  Aebi, H. (1974). Catalase. In Methods of enzymatic analysis. Academic press 673-684.
 
[20]  Kakkar, P., Das, B., &Viswanathan, P. N. (1984). A modified spectrophotometric assay of superoxide dismutase.
 
[21]  Rotruck, J. T., Pope, A. L., Ganther, H. E., Swanson, A. B., Hafeman, D. G., & Hoekstra, W. (1973). Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588-590.
 
[22]  Jollow, D. J., Mitchell, J. R., Zampaglione, N., & Gillette, J. R. (1974). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11: 151-169.
 
[23]  Carlberg, I., &Mannervik, B. (1975). Purification of the flavoenzyme glutathione reductasefrom rat liver. J BiolChem 250: 5475-5480.
 
[24]  Habig, W. H., Pabst, M. J., &Jakoby, W. B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249: 7130-7139.
 
[25]  Ohkawa, H., Ohishi, N., &Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95: 351-358.
 
[26]  Hayashi, I., Morishita, Y., Imai, K., Nakamura, M., Nakachi, K. &Hayashi, T., 2007. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 631: 55-61.
 
[27]  Ijaz, M. U., Aziz, S., Faheem, M., Abbas, K., Nasir, S., Naz, H., & Imran, M. (2021). Orientin Attenuates Cisplatin-Induced Renal Toxicity by Reducing Oxidative Stress and Inflammation. Pakistan Veterinary Journal 41: 574-578.
 
[28]  Nagai, K., Fukuno, S., Oda, A., & Konishi, H. (2016). Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anti-Cancer Drugs 27: 17-23.
 
[29]  Deponte, M. (2013). Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimicaet BiophysicaActa (BBA)-General Subjects, 1830(5), 3217-3266.
 
[30]  Wang, R., Wang, J., Song, F., Li, S., & Yuan, Y. (2018). Tanshinol ameliorates CCl4-induced liver fibrosis in rats through the regulation of Nrf2/HO-1 and NF-κB/IκBα signaling pathway. Drug Design, Development and Therapy 12: 1281.
 
[31]  Ara, C., Arshad, A., Faheem, M., Khan, M., & Shakir, H. A. (2022). Protective Potential of Aqueous Extract of Allium cepa against Tartrazine Induced Reproductive Toxicity. Pakistan Veterinary Journal 42: 358-363.
 
[32]  Widowati, W., Prahastuti, S., Hidayat, M., Hasiana, S.T., Wahyudianingsih, R., Afifah, E., Kusuma, H.S.W., Rizal, R. and Subangkit, M., 2022. Protective Effect of Ethanolic Extract of Jati Belanda (Guazuma ulmifolia L.) by Inhibiting Oxidative Stress and Inflammatory Processes in Cisplatin-induced Nephrotoxicity in Rats. Pakistan Veterinary Journal 42: 376-382.
 
[33]  Elsayed, A., Elkomy, A., Alkafafy, M., Elkammar, R., Fadl, S.E., Abdelhiee, E.Y., Abdeen, A., Youssef, G., Shaheen, H., Soliman, A., & Aboubakr, M. 2021. Ameliorating Effect of Lycopene and N-Acetylcysteine against Cisplatin-Induced Cardiac Injury in Rats. Pakistan Veterinary Journal 42: 107-111.
 
[34]  Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery 20: 689-709.
 
[35]  Ishtiaq, A., Ijaz, M. U., Ehsan, N., Imran, M., Naz, H., Alvi, K., & Zhu, G. (2022). Therapeutic Effect of Oroxylin A Against Bisphenol A-induced Kidney Damage in Rats: a Histological and Biochemical Study. Pakistan Veterinary Journal 42: 511-516.
 
[36]  Vyas, D., Laput, G., &Vyas, A. K. (2014). Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets and Therapy 7: 1015.
 
[37]  Somade, O. T., Ajayi, B. O., Safiriyu, O. A., Oyabunmi, O. S., &Akamo, A. J. (2019). Renal and testicular up-regulation of pro-inflammatory chemokines (RANTES and CCL2) and cytokines (TNF-α, IL-1β, IL-6) following acute edible camphor administration is through activation of NF-kB in rats. Toxicology Reports 6: 759-767.
 
[38]  Abd El-Dayem, S. M., Fouda, F., Helal, M., &Zaazaa, A. (2010). The role of Catechin against doxorubicin-induced cardiotoxicity in Ehrlich ascites carcinoma cells (EAC) bearing mice. American Journal of Science 6: 146-152.
 
[39]  Ijaz, M. U., Ishtiaq, A., Ehsan, N., Imran, M., & Zhu, G. P. (2022). Hepatoprotective Potential of Genkwanin Against Aflatoxin B1-Induced Biochemical, Inflammatory and Histopathological Toxicity in Rats. Pakistan Veterinary Journal 42: 499-504.
 
[40]  Santana, T. (2018). Apoptosis and cell cycle aberrations in epithelial odontogenic lesions: evidence by the expression of p53, Bcl-2 and Bax. Medicina Oral, Patología Oral y CirugíaBucal, 23: 1.
 
[41]  Végran, F., Boidot, R., Solary, E., & Lizard-Nacol, S. (2011). A short caspase-3 isoform inhibits chemotherapy-induced apoptosis by blocking apoptosome assembly. PloS One6: e29058.
 
[42]  Wali, A. F., Rashid, S., Rashid, S. M., Ansari, M. A., Khan, M. R., Haq, N., Alhareth, D. Y., Ahmad, A., &Rehman, M. U. (2020). Naringenin regulates doxorubicin-induced liver dysfunction: impact on oxidative stress and inflammation. Plants 9: 550.