Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2023, 11(1), 1-12
DOI: 10.12691/jfnr-11-1-1
Open AccessArticle

Anthocyanin Stability in a Mix of Phenolic Extracts Microencapsulated by Maltodextrine, Whey Protein and Gum Arabic

Juliana de Cássia Gomes da Rocha1, Thaís Caroline Buttow Rigolon1, , Larissa Lorrane Rodrigues Borges1, Amanda Laís Alves Almeida Nascimento1, Nathália de Andrade Neves2, Ítalo tuler Perrone3, Rodrigo Stephani3 and Paulo César Stringheta1

1Department of Food Technology, Universidade Federal de Viçosa

2Institute of Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri

3Department of Chemistry, Universidade Federal de Juiz de Fora

Pub. Date: January 03, 2023

Cite this paper:
Juliana de Cássia Gomes da Rocha, Thaís Caroline Buttow Rigolon, Larissa Lorrane Rodrigues Borges, Amanda Laís Alves Almeida Nascimento, Nathália de Andrade Neves, Ítalo tuler Perrone, Rodrigo Stephani and Paulo César Stringheta. Anthocyanin Stability in a Mix of Phenolic Extracts Microencapsulated by Maltodextrine, Whey Protein and Gum Arabic. Journal of Food and Nutrition Research. 2023; 11(1):1-12. doi: 10.12691/jfnr-11-1-1

Abstract

The objective of this work was to study the stability of the anthocyanins in a mixture of of jabuticaba, jussara and blueberry phenolic extracts microencapsulated by the spray drying technique during storage under different conditions: light, dark and 40°C. Combinations of maltodextrin, gum arabic and whey protein encapsulating agents were used, totaling 12 assays. The mean values of total anthocyanins among the three storage conditions for the M1 mixture were 1360.86 mg·100 g-1 to 1184.15 mg·100 g-1, at 0 and 75 days of storage. The overall color difference values for all samples were less than 5.0, indicating that there were no perceptible color differences between them throughout the stability study. M1 and M3 presented good rehydration capacity and smaller particle size among the samples evaluated. The microencapsulation technique was successfully applied to maintain the stability of the anthocyanins from a blend phenolic extract under different storage conditions.

Keywords:
stability total anthocyanins antioxidant capacity wall materials microencapsulation

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Jiménez-Aguilar, D. M., Ortega-Regules, A. E., Lozada-Ramírez, J. D., Pérez-Pérez, M. C. I., Vernon-Carter, E. J., & Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis, 24(6), 889-894.
 
[2]  Lee, Y.-M., Yoon, Y., Yoon, H., Park, H.-M., Song, S., & Yeum, K.-J. (2017). Dietary Anthocyanins against Obesity and Inflammation. Nutrients, 9(1089), 1-15.
 
[3]  Cai, D., Li, X., Chen, J., Jiang, X., Ma, X., Sun, J., Tian, L., Vidyarthi, S. K., Xu, J., Pan, Z., & Bai, W. (2022). A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry, 366, 130611.
 
[4]  Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201, 14-22.
 
[5]  Sharif, N., Khoshnoudi-Nia, S., & Jafari, S. M. (2020). Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International, 132, 109077.
 
[6]  Fang, J. (2015). Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition, 31, 1301-1306.
 
[7]  He, B., Ge, J., Yue, P., Yue, X., Fu, R., Liang, J., & Gao, X. (2017). Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chemistry, 221, 1671-1677.
 
[8]  Lu, W., Yang, X., Shen, J., Li, Z., Tan, S., Liu, W., & Cheng, Z. (2021). Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients: Taking phenolic compounds as examples. Powder Technology, 394, 562-574.
 
[9]  Piovesana, A., & Noreña, C. P. Z. (2018). Microencapsulation of Bioactive Compounds from Hibiscus Calyces Using Different Encapsulating Materials. International Journal of Food Engineering, 14(1).
 
[10]  Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B., Sağlam, H., & Karaaslan, A. (2021). Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chemistry, 337, 127748.
 
[11]  Pieczykolan, E., & Kurek, M. A. (2019). Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules, 129, 665-671.
 
[12]  Flores, F. P., Singh, R. K., Kerr, W. L., Pegg, R. B., & Kong, F. (2014). Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chemistry, 153, 272-278.
 
[13]  Romero-González, J., Shun Ah-Hen, K., Lemus-Mondaca, R., & Muñoz-Fariña, O. (2020). Total phenolics, anthocyanin profile and antioxidant activity of maqui, Aristotelia chilensis (Mol.) Stuntz, berries extract in freeze-dried polysaccharides microcapsules. Food Chemistry, 313, 126115.
 
[14]  Rocha, J. C. G., Procópio, F. R., Mendonça, A. C., Vieira, L. M., Perrone, Í. T., de Barros, F. A. R., & Stringheta, P. C. (2018). Optimization of ultrasound-assisted extraction of phenolic compounds from jussara (Euterpe edulis M.) and blueberry (Vaccinium myrtillus) fruits. Food Science and Technology, 38(1), 45-53.
 
[15]  Silva, P. I., Stringheta, P. C., Teófilo, R. F., & Oliveira, I. R. N. (2013). Parameter optimization for spray-drying microencapsulation of jaboticaba (Myrciaria jaboticaba) peel extracts using simultaneous analysis of responses. Journal of Food Engineering, 117(4), 538-544.
 
[16]  Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231-1237.
 
[17]  Lees, D., & Francis, F. (1972). Standardization of pigment analyses in cranberries. HortScience, 7, 83-84.
 
[18]  Costa, J. M. C. da, Medeiros, M. de F. D. de, & Mata, e A. L. M. L. da. (2003). Isotermas de adsorção de pós de beterraba (Beta vulgaris L.), abóbora (Cucurbita moschata) e cenoura (Daucus carota) obtidos pelo processo de secagem em leito de jorro : estudo comparativo. Revista Ciência Agronômica, 34(1), 5-9.
 
[19]  Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411-418.
 
[20]  Peng, G. et al. (2007). Modeling of water sorption isotherm for corn starch. Journal of Food Engeenering, 80, 562-567.
 
[21]  Hernández-Herrero, J. A., & Frutos, M. J. (2015). Influence of rutin and ascorbic acid in colour, plum anthocyanins and antioxidant capacity stability in model juices. Food Chemistry, 173, 495-500.
 
[22]  Mahdavee Khazaei, K., Jafari, S. M., Ghorbani, M., & Hemmati Kakhki, A. (2014). Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydrate Polymers, 105(1), 57-62.
 
[23]  Moser, P., Telis, V. R. N., de Andrade Neves, N., García-Romero, E., Gómez-Alonso, S., & Hermosín-Gutiérrez, I. (2017). Storage stability of phenolic compounds in powdered BRS Violeta grape juice microencapsulated with protein and maltodextrin blends. Food Chemistry, 214, 308-318.
 
[24]  Lacerda, E. C. Q., Calado, V. M. de A., Monteiro, M., Finotelli, P. V., Torres, A. G., & Perrone, D. (2016). Starch, inulin and maltodextrin as encapsulating agents affect the quality and stability of jussara pulp microparticles. Carbohydrate Polymers, 151, 500-510.
 
[25]  Constant, P. B. L. (2003). Extração, caracterização e aplicação de antocianinas de açaí (Euterpe oleraea , M .). Tese (Doutorado em Ciência e Tecnologia de Alimentos). Universidade Federal de Viçosa, Viçosa, MG.
 
[26]  Obón, J. M., Castellar, M. R., Alacid, M., & Fernández-López, J. A. (2009). Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. Journal of Food Engineering, 90(4), 471-479.
 
[27]  Silva, G. J. F. Da, Constant, P. B. L., Figueiredo, R. W. De, & Moura, S. M. (2010). Formulação e estabilidade de corantes de antocianinas extraídas das cascas de jabuticaba ( Myrciaria ssp.). Alim. Nutr., Araraquara, 21(3), 429-436.
 
[28]  Akhavan Mahdavi, S., Jafari, S. M., Assadpoor, E., & Dehnad, D. (2016). Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. International Journal of Biological Macromolecules, 85, 379-385.
 
[29]  Tonon, R. V., Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907-914.
 
[30]  da Silva Carvalho, A. G., da Costa Machado, M. T., da Silva, V. M., Sartoratto, A., Rodrigues, R. A. F., & Hubinger, M. D. (2016). Physical properties and morphology of spray dried microparticles containing anthocyanins of jussara (Euterpe edulis Martius) extract. Powder Technology, 294, 421-428.
 
[31]  Reid, D. S., Fennema, O. R. (2010) Água e gelo. In Damodaran et al., Química de alimentos de Fennema, 4ª Ed. (p. 25-74). Porto Alegre – RS, Brasil: Artmed.
 
[32]  Tonon, R. V, Baroni, A. F., Brabet, C., Gibert, O., Pallet, D., & Hubinger, M. D. (2009). Water sorption and glass transition temperature of spray dried açai (Euterpe oleracea Mart ) juice. Journal of Food Engineering, 94(3-4), 215-221.
 
[33]  Fennema, O. R., Damodaran, S., & Parkin, K. L. (2010). Química de alimentos de Fennema (4a). Artmed.
 
[34]  Mosquera, L. H., Moraga, G., & Martínez-Navarrete, N. (2012). Critical water activity and critical water content of freeze-dried strawberry powder as affected by maltodextrin and arabic gum. Food Research International, 47(2), 201-206.