Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: https://www.sciepub.com/journal/jfnr Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Go
Journal of Food and Nutrition Research. 2022, 10(8), 578-583
DOI: 10.12691/jfnr-10-8-6
Open AccessArticle

Genotoxic Effects of Oral Ascorbate in Healthy Mice: Evaluation of DNA Single-strand Breaks and Micronucleus

Marcela Rojas-Lemus1, Patricia Bizarro-Nevares1, Adriana E. González-Villalva1, Nelly López-Valdéz1, Norma Rivera-Fernández2 and Teresa I. Fortoul1,

1Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México, 04510.

2Laboratorio de Malariología. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, México, 04510

Pub. Date: August 23, 2022

Cite this paper:
Marcela Rojas-Lemus, Patricia Bizarro-Nevares, Adriana E. González-Villalva, Nelly López-Valdéz, Norma Rivera-Fernández and Teresa I. Fortoul. Genotoxic Effects of Oral Ascorbate in Healthy Mice: Evaluation of DNA Single-strand Breaks and Micronucleus. Journal of Food and Nutrition Research. 2022; 10(8):578-583. doi: 10.12691/jfnr-10-8-6

Abstract

Ascorbate is part of the first-line antioxidant defense in biological fluids. It reacts with a variety of oxidants and is currently used in treatments to mitigate some diseases including cancer. However, this agent may cause DNA damage in healthy animal cells but the effects of ascorbate per se on biological systems have not yet been reported. Therefore, the aim of this study was to explore the ascorbate cytotoxic and genotoxic effects in cells from healthy mice (35 individuals in total, divided into 7 groups of 5 animals each and oral daily doses for 28 days). The results showed that ascorbate (at doses of 100, 150 and 225 mg/kg) causes a significant increase in micronuclei (MN) frequency (during the 4 weeks of administration: respectively 3, 4, 4 MN for every 2,000 reticulocytes, with a p value ≤ 0.05). The Pearson correlation index showed a positive and significant correlation r2= 0.9230; p= 0.0254) between the highest dose (225 mg) and the time of administration. The lowest dose that was administered in this study (50 mg/kg) did not produce MN however, a significant increase of DNA single-strand breaks was observed during all experimental time (in average, the migration index was 1.28 in comparison to 1.1 of the control group, with a p value ≤ 0.05). Cell death by cytotoxicity was not observed at any dose. These results indicate that the administration of ascorbate in healthy subjects is not innocuous and that its administration should be supervised because nowadays, the supplementation of large amounts of ascorbate without any medical supervision is frequent.

Keywords:
ascorbate cell viability retyculocytes DNA damage genotoxicity

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  Carr, A.C., and Frei, B. “Vitamin C in Cardiovascular Diseases”. In: HandBook of Antioxidants. Cadenas, E., and Packel L, Editors. 2nd Ed. New York: Marcel Dekker Inc, 2002, 147-166.
 
[2]  The American Cancer Society [home page on the internet]. Dietary supplements, what is safe? C2016 [last medical review 3th March 2015: cited 27th June 2022]. Available from: http://www.cancer.org/treatment/treatmentsandsideeffects/complementaryandalternativemedicine/ dietarysupplements/dietary-supplements-toc.
 
[3]  Chambial, S., Dwivedi, S., Shukla K.K., John P.J., Sharma P. “Vitamin C in disease prevention and cure: an overview”, Indian Journal of Clinical Biochemistry, 28(4). 314-28. 2013.
 
[4]  Enstrom, J.E. “Epidemiological and Clinical Aspects of Ascorbate and Cancer”. In: HandBook of Antioxidants. Cadenas, E., and Packel, L., Editors. 2nd Ed. New York: Marcel Dekker Inc; 2002. 167-188.
 
[5]  Du, J., Cullen, J.J., Buettner, G.R. “Ascorbic acid: chemistry, biology and the treatment of cancer”. Biochimica et Biophysica Acta, 1826(2). 443-57. 2012.
 
[6]  Cooke, M.S., Evans M.D., Podmore I.D. “Novel repair action of vitamin C upon in vivo oxidative DNA damage”. FEBS Letters, 439(3). 363-67. 1998.
 
[7]  Tarng, D.C., Liu, T.Y., Huang, T.P. “Protective effect of vitamin C on 8-hydroxy-2'-deoxyguanosine level in peripheral blood lymphocytes of chronic hemodialysis patients”. Kidney Int, 66(2). 820-31. 2004.
 
[8]  U.S. National Library of Medicine [home page on the internet]. Department of Health and Human Services National Institutes of Health; c2016 [updated: 17th June 2016: cited 27th June 2021] MedLine Plus. Vitamin C. Avalaible from: https://www.nlm.nih.gov/medlineplus/vitaminc.html.
 
[9]  Podmore, I.D., Griffiths, H.R., Herbert, K.E., Mistry, N., Mistry, P., Lunec, J. “Vitamin C exhibits pro-oxidant properties”. Nature, 392(6676). 559. 1998.
 
[10]  Duarte, T.L., and Lunec, J. “When is an antioxidant not an antioxidant? A review of novel actions and reactions of vitamin C”. Free Radical Research, 39(7). 671-686. 2009.
 
[11]  Krishna, G., and Hayashi, M. “In vivo rodent micronucleus assay: protocol, conduct and data interpretation”. Mutation Research, 455. 155-66. 2000.
 
[12]  Zalacain, M., Sierrasesúmaga, L., Patiño, A. “El ensayo de micronúcleos como medida de inestabilidad genética”. Anales del Sistema Sanitario de Navarra, 28. 227-36. 2005.
 
[13]  Kirsch, V.M., Vanhauwaert, A., De Boek, M., Decordier, I. “Importance of detecting numerical versus structural chromosome aberration”. Mutation Research. 504. 137-48. 2002.
 
[14]  Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L. “A simple technique for quantitation of low levels of DNA damage in individual cells”. Experimental Cell Research, 175(1). 184-91. 1998.
 
[15]  Tice, R.R., Agurell, E. et al. “Single Cell Gel comet assay: guidelines for in vitro and in vivo genetic toxicology testing”. Environmental Molecular Mutagenesis, 35. 206-21. 2000.
 
[16]  Schneider, B.M., Würgler, F.E., Romagna, F. “Distinct area distribution differences of micronuclei induced by clastogenic and aneuploidogenic chemicals in the bone marrow of CD-1 mouse”. Mutation Research. 334. 81-89. 1995.
 
[17]  Sugiyama, C., Miyamae, Y., Kobayashi, H., Fujino, Y., Mori, M., Ohara, K. “The MN test of methyl methanesulfonate with mouse peripheral blood reticulocytes using acridine orange-coated slides”. Mutation Research. 278. 117-20. 1992.
 
[18]  Rivera, N., Rojas, M., Zepeda, A., Malagón, F., Arán, V.J., Marrero-Ponce, Y., Rivera, E., Fortoul, T.I. “In vivo genotoxicity and cytotoxicity assessment of a novel quinoxalinone with trichomonacide activity”. Journal of Applied Toxicology, 33. 1493-99. 2013.
 
[19]  Hayashi, M., Morita, T., Kodama, Y., Sofuni, T., Ishidate, M. “The Micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides”. Mutation Research, 245. 245-49. 1990.
 
[20]  Rojas-Lemus, M., Altamirano-Lozano, M., and Fortoul, T.I. “Sex differences in blood genotoxic and cytotoxic effects as a consequence of vanadium inhalation: micronucleus assay evaluation”. Journal of Applied Toxicology, 34. 258–64. 2014.
 
[21]  Rodríguez-Mercado, J.J., Mateos-Nava, R.A., Altamirano-Lozano, M.A. “DNA damage induction in human cells exposed to vanadium oxides in vitro”. Toxicology In Vitro, 25. 1996-2002. 2011.
 
[22]  Levine, M., Rumsey, S.C., Duruwala, R., Park, J.B., Wang, Y. “Criteria and recommendations for vitamin C intake”. Journal of American Medical Association, 281(15). 1415-23. 1999.
 
[23]  Herbert, K.E., Fletcher, S., Chauhan, D., Ladapo, A., Nirwan, J., Munson, S., Mistry, P. “Dietary supplementation with different vitamin C doses: no effect on oxidative DNA damage in healthy people”. European Journal of Nutrition, 45(2). 97-104. 2006.
 
[24]  Böttger, F., Vallés-Martí, A., Cahn, L., & Jimenez, C., R. “High-dose intravenous vitamin C, a promising multi-targeting agent in the treatment of cancer”. Journal of experimental & clinical cancer research, 40(1). 343. 2021.
 
[25]  Doseděl, M., Jirkovský, E., Macáková, K., Krčmová, L,. K., Javorská, L., Pourová, J., Mercolini, L., Remião, F., Nováková, L., Mladěnka, P., & On Behalf Of The Oemonom. “Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination”. Nutrients, 13(2). 615. 2021.
 
[26]  Slupphaug, G., Kavli, B., Krokan, H.E. “The interacting pathways for prevention and repair of oxidative DNA damage”. Mutation Research, 531. 231-51. 2003.
 
[27]  Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M., Mazur, M. “Free radicals, metals and antioxidants in oxidative stress-induced cancer”. Chemico-Biological Interactions, 160. 1-40. 2006.
 
[28]  Halliwell, B. “Food-Derived Antioxidants: How to Evaluate Their Importance in Food and In Vivo”. In: Handbook of Antioxidants. Cadenas E and Packel L Editors. 2nd Ed. New York: Marcel Dekker Inc; 2002. 1-46.