[1] | FAO/WHO. (2002). Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. Available from http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. |
|
[2] | Lin, T.L., Shu, C.C., Lai, W.F., Tzeng, C.M., Lai, H.C., and Lu, C.C. (2019). Investiture of next generation probiotics on amelioration of diseases–Strains do matter. Med Microecol 1-2: 100002. |
|
[3] | Wang, S.C., Chang, C.K., Chan, S.C., Chiu, C.K. and Duh, P.D. (2019). Evaluation of lactic acid bacteria isolated from fermented mustards in lowering hypercholesterol by using bile salt hydrolase (BSH) activity and bile salt de-conjugation. Afr J Microbiol Res 13: 683-690. |
|
[4] | Swain, M.R., Anandharaj, M., Ray, R.C. and Parveen Rani, R. (2014). Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int doi: 10.1155/2014/250424. |
|
[5] | Chang, M.H., Hong, S.F., Chen, J.H., Lin, M.F., Chen, C.S., Wang, S.C. (2016). Antibacterial activity Lactobacillus plantarum isolated from fermented vegetables and investigation of the plantaricin genes. Afr J Microbiol Res 10: 796-803. |
|
[6] | Lee, J., Yun, H.S., Cho, K.W., Oh, S., Kim, S.H., Chun, T., Kim, B. and Whang, K.Y. (2011). Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: Immune modulation and longevity. Int J Food Microbiol 148: 80-86. |
|
[7] | Chang, C.K., Wang, S.C., Chan, S.C., Shieh, J.S., Chiu, C.K. and Duh, P.D. (2015). Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity. Asian Pac J Trop Biomed 5: 281-286. |
|
[8] | Arrioja-Bretón, D., Mani-López, E., Palou, E., López-Malo, A. (2020). Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Chem 115: 107286. |
|
[9] | Souza, E.C., de Souza de Azevedo, P.O., Domínguez, J.M., Converti, A., & de Souza Oliveira, R.P. (2017). Influence of temperature and pH on the production of biosurfactant, bacteriocin and lactic acid by Lactococcus lactis CECT-4434. CyTA – J Food 15(4): 525-530. |
|
[10] | Herna´ndez, D., Cardell, E., and Za´rate, V. (2005). Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J Appl Microbiol 99: 77-84. |
|
[11] | Kadyan, S., Rashmi, H.M., Pradhan, D., Kumari, A., Chaudhari, A., and Deshwal, G.K. (2021). Effect of lactic acid bacteria and yeast fermentation on antimicrobial, antioxidative and metabolomic profile of naturally carbonated probiotic whey drink. LWT - Food Sci Technol 142: 111059. |
|
[12] | Chen, C.C., Chang, C.K., Duh, P.D., Wang, P.S. and Wang, S.C. (2013). Antibacterial properties of Lactobacillus plantarum isolated from fermented mustards against Streptococcus mutans. Afr J Microbiol Res 7: 4787-4793. |
|
[13] | Beristain-Bauza, S.C., Mani-López, E., Palou, E., and López-Malo, A. (2016). Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 62: 44–51. |
|
[14] | Tanner, M.A., Everett, C.L. and Youvan, D.C. (2000). Molecular phylogenetic evidence for noninvasive zoonotic transmission of Staphylococcus intermedius from a canine pet to a human. J Clin Microbiol 38: 1628-1631. |
|
[15] | Kim, Y.H., Oh, S., Park, S., and Kim, S.H. (2009). Interactive transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 and intestinal epithelial HT-29 cells after bacterial attachment. Int J Food Microbiol 131: 224-232. |
|
[16] | Vitta, Y., Figueroa, M., Calderon, M., and Ciangherotti, C. (2020). Synthesis of iron nanoparticles from aqueous extract of Eucalyptus robusta Sm and evaluation of antioxidant and antimicrobial activity. Mater Sci Energ Technol 3: 97-103. |
|
[17] | Tsai, Y.T., Cheng, P.C., Fan, C.K. and Pan, T.M. (2008). Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int J Food Microbiol 128: 219-225. |
|
[18] | Wise, M.G. and Siragusa, G.R. (2007). Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 102: 1138-1149. |
|
[19] | Tuomola, E.M. and Salminen, S.J. (1998). Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int J Food Microbiol 41: 45-51. |
|
[20] | Gopal, P.K., Prasad, J., Smart, J. and Gill, H.S. (2001). In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67: 207-216. |
|
[21] | Montesi, A., García-Albiach, R., Pozuelo, M.J., Pintado, C., Goñi, I. and Rotger, R. (2005). Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int J Food Microbiol 98: 281-289. |
|
[22] | Bhat, A.R., Irorere, V.U., Bartlett, T., Hill, D., Kedia, G., Charalampopoulos, D., Nualkaekul, S. and Radecka, I. (2015). Improving survival of probiotic bacteria using bacterial poly-γ-glutamic acid. Int J Food Microbiol 196: 24-31. |
|
[23] | Guglielmotti, D., Marcó, M.B., Vinderola, C., de Los Reyes Gavilán, C., Reinheimer, J. and Quiberoni, A. (2007). Spontaneous Lactobacillus delbrueckii phage-resistant mutants with acquired bile tolerance. Int J Food Microbiol 119: 236-242. |
|
[24] | Margolles, A., García, L., Sánchez, B., Gueimonde, M. and de los Reyes Gavilán, C.G. (2003). Characterisation of a Bifidobacterium strain with acquired resistance to cholate-A preliminary study. Int J Food Microbiol 82: 191-198. |
|
[25] | Xu, W., Li, L., Lu, J., Luo, Y., Shang, Y. and Huang, K. (2011). Analysis of caecal microbiota in rats fed with genetically modified rice by real-time quantitative PCR. J Food Sci 76: M88-93. |
|
[26] | Yerlikaya, O. (2018). Probiotic potential and biochemical and technological properties of Lactococcus lactis ssp. lactis strains isolated from raw milk and kefir grains. J. Dairy Sci. 102:124-134. |
|
[27] | Lin, C.K., Tsai, H.C., Lin, P.P., Tsen, H.Y., and Tsai, C.C. (2008). Lactobacillus acidophilis LAP 5 able to inhibit Salmonella choleraesuis invasion to the human Caco- 2 epithelial cell. Anaerobe 14: 251-255. |
|
[28] | Kullen, M.J., Khil, J., Busta, F.F., Gallaher, D.D. and Brady, L.J. (1998). Carbohydrate source and bifidobacteria influence the growth of Clostridium perfringens in vivo and in vitro. Nut Res 18: 1889-1897. |
|
[29] | Liu, H.Y., Xu, W.T., Yuan, Y.F., Cao, S.S., He, X.Y., Li, S.Y., Huang, K.L. and Luo, Y.B. (2012). The effect of genetically modified Lactobacillus plantarum 590 on the gut health of Sprague-Dawley rats. IUBMB Life 64: 617-627. |
|
[30] | Mondragón-Bernal, O.L., Alves, J. G.L.F., Teixeira, M.A., Ferreira, M.F.P. and Filho, F.M. (2017). Stability and functionality of synbiotic soy food during shelf-life. J Funct Foods 35: 134-145. |
|
[31] | Tsirtsikos, P., Fegeros, K., Kominakis, A., Balaskas, C. and Mountzouris, K.C. (2012). Modulation of intestinal mucin composition and mucosal morphology by dietary phytogenic inclusion level in broilers. Animal 6: 1049-1057. |
|
[32] | Pelicano, E.R.L., Souza, P.A., Souza, H.B.A., Figueiredo, D.F., Boiago, M.M., Carvalho, S.R. and Bordon, V.F. (2005). Intestinal mucosa development in broiler chickens fed natural growth promoters. Braz J Poultry Sci 7: 221-229. |
|