Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2021, 9(3), 114-123
DOI: 10.12691/jfnr-9-3-3
Open AccessArticle

Determination of Phenolic Content, Biological Activity, and Enzyme Inhibitory Properties with Molecular Docking Studies of Rumex nepalensis, an Endemic Medicinal Plant

Ercan Bursal1, , Mustafa Abdullah Yılmaz2, Abdülmelik Aras3, Fikret Türkan4, Ümit Yildiko5, Ömer Kılıç6 and Abhijit Dey7

1Department of Nursing, Faculty of Health, Muş Alparslan University, Mus, Turkey

2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey

3Department of Biochemistry, Faculty of Science and Arts, Igdır University, Igdır, Turkey

4Health Services Vocational School, Igdır University, Igdır, Turkey

5Department of Bioengineering, Kafkas University, Kars, Turkey

6Department of Pharmaceutical Sciences, Pharmacy Faculty, Adıyaman University, Adıyaman, Turkey

7Department of Life Sciences, Presidency University, Kolkata, India

Pub. Date: March 14, 2021

Cite this paper:
Ercan Bursal, Mustafa Abdullah Yılmaz, Abdülmelik Aras, Fikret Türkan, Ümit Yildiko, Ömer Kılıç and Abhijit Dey. Determination of Phenolic Content, Biological Activity, and Enzyme Inhibitory Properties with Molecular Docking Studies of Rumex nepalensis, an Endemic Medicinal Plant. Journal of Food and Nutrition Research. 2021; 9(3):114-123. doi: 10.12691/jfnr-9-3-3


This study was conducted to evaluate the phenolic content, antioxidant potential, and enzyme inhibitiory properties of Rumex nepalensis by in vitro spectrophotometric methods. The experiments demonstrated that glutathione S-transferase (GST), α-glycosidase (α-Gly), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) enzymes were strongly inhibited by R. nepalensis extracts. The IC50 values for GST, α-Gly, AChE, and BChE enzyme inhibitions were calculated as 21.01 mg/mL, 34.65 mg/mL, 27.72 mg/mL, and 17.32 mg/mL, respectively. Also, effective antioxidant capacities of water and methanol extracts of R. nepalensis were determined by ABTS, CUPRAC, DPPH, and FRAP methods. Furthermore, quinic acid (15.61 mg/g), miquelianin (2.06 mg/g), quercitrin (1.97 mg/g), and protocatechuic acid (0.217 mg/g) were identified to be the major phenolic compounds of the plant extract according to the LC-MS/MS analysis. Finally, molecular docking studies were carried out to show the interactions of quinic acid, miquelianin, and quercitrin with AChE, BChE, GST, and α-Gly enzymes. Docking analysis indicated the possible roles of these phytochemicals in enzyme inhibitory activities.

biological activity enzyme inhibition molecular docking phenolic compounds Rumex

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  K. Rao, S. Ch, D. Banji, A study on the nutraceuticals from the genus Rumex, (2011).
[2]  A. Savran, G. Zengin, A. Aktumsek, A. Mocan, J. Glamoćlija, A. Ćirić, M. Soković, Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits, Food & function 7(7) (2016) 3252-3262.
[3]  A. Vasas, O. Orbán-Gyapai, J. Hohmann, The Genus Rumex: Review of traditional uses, phytochemistry and pharmacology, J. Ethnopharmacol. 175 (2015) 198-228.
[4]  T. Baytop, Therapy with medicinal plants in Turkey (past and present), Publication of the istanbul University 312 (1999).
[5]  G. Zhang, H. Zhao, Z. Wang, J. Cheng, X. Tang, Recent advances in the study of chemical constituents and bioactivity of Rumex L, World Sci Tech (Mod Trad Chin Med) 10 (2008) 86-93.
[6]  V. Spínola, E.J. Llorent-Martínez, P.C. Castilho, Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion?, Food Chem. 259 (2018) 105-112.
[7]  D.-C. Hao, P.-G. Xiao, Deep in shadows: Epigenetic and epigenomic regulations of medicinal plants, Chinese Herbal Medicines 10(3) (2018) 239-248.
[8]  Y.S. Velioglu, G. Mazza, L. Gao, B.D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products, J. Agric. Food. Chem. 46(10) (1998) 4113-4117.
[9]  S. Takshak, S.B. Agrawal, Defense potential of secondary metabolites in medicinal plants under UV-B stress, J Photochem Photobiol B 193 (2019) 51-88.
[10]  M.M. Donglikar, S.L. Deore, Sunscreens: A review, Pharmacognosy Journals 8(3) (2016).
[11]  C. Lee, S.-Y. Kim, S. Eum, J.-H. Paik, T.T. Bach, A.M. Darshetkar, R.K. Choudhary, B.H. Quang, N.T. Thanh, S. Choi, Ethnobotanical study on medicinal plants used by local Van Kieu ethnic people of Bac Huong Hoa nature reserve, Vietnam, J. Ethnopharmacol. 231 (2019) 283-294.
[12]  O. Ajayi, M. Aderogba, E. Obuotor, R. Majinda, Acetylcholinesterase inhibitor from Anthocleista vogelii leaf extracts, J. Ethnopharmacol. 231 (2019) 503-506.
[13]  X. Lu, H. Yang, Q. Li, Y. Chen, Q. Li, Y. Zhou, F. Feng, W. Liu, Q. Guo, H. Sun, Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation, Bioorg. Chem. 85 (2019) 117-127.
[14]  P. Taslimi, A. Sujayev, F. Turkan, E. Garibov, Z. Huyut, V. Farzaliyev, S. Mamedova, İ. Gulçin, Synthesis and investigation of the conversion reactions of pyrimidine‐thiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities, Journal of biochemical and molecular toxicology 32(2) (2018) e22019.
[15]  K. Yates, F. Pohl, M. Busch, A. Mozer, L. Watters, A. Shiryaev, P.K.T. Lin, Determination of sinapine in rapeseed pomace extract: Its antioxidant and acetylcholinesterase inhibition properties, Food Chem. 276 (2019) 768-775.
[16]  N. Traverso, R. Ricciarelli, M. Nitti, B. Marengo, A.L. Furfaro, M.A. Pronzato, U.M. Marinari, C. Domenicotti, Role of glutathione in cancer progression and chemoresistance, Oxidative medicine and cellular longevity 2013 (2013).
[17]  M.A. Yilmaz, Simultaneous quantitative screening of 53 phytochemicals in 33 species of medicinal and aromatic plants: A detailed, robust and comprehensive LC–MS/MS method validation, Industrial Crops and Products 149 (2020) 112347.
[18]  İ. Gulcin, Antioxidants and antioxidant methods: an updated overview, Archives of toxicology (2020) 1-65.
[19]  E. Bursal, A. Aras, Ö. Kılıç, Evaluation of antioxidant capacity of endemic plant Marrubium astracanicum subsp. macrodon: Identification of its phenolic contents by using HPLC-MS/MS, Natural product research 33(13) (2019) 1975-1979.
[20]  A. Aras, M. Silinsin, M.N. Bingol, E. Bursal, Identification of Bioactive Polyphenolic Compounds and Assessment of Antioxidant Activity of Origanum acutidens, International Letters of Natural Sciences 66 (2017) 1-8.
[21]  F. Türkan, M.N. Atalar, A. Aras, İ. Gülçin, E. Bursal, ICP-MS and HPLC analyses, enzyme inhibition and antioxidant potential of Achillea schischkinii Sosn, Bioorganic Chemistry 94 (2020) 103333.
[22]  M. Işık, Y. Demir, M. Kırıcı, R. Demir, F. Şimşek, Ş. Beydemir, Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs, Archives of physiology and biochemistry 121(3) (2015) 97-102.
[23]  D. Biovia, H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, T.J.T.J.o.C.P. Richmond, Dassault Systèmes BIOVIA, Discovery Studio Visualizer, v. 17.2, San Diego: Dassault Systèmes, 2016, 10 (2000) 0021-9991.
[24]  S. Release, 3: Maestro, Schrödinger, LLC: New York, NY, USA, 2019, 2019.
[25]  S.K. Burley, H.M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. Di Costanzo, C. Christie, K. Dalenberg, J.M. Duarte, S. Dutta, RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy, Nucleic acids research 47(D1) (2019) D464-D474.
[26]  N.J.P. Subhashini, E. Praveen Kumar, N. Gurrapu, V. Yerragunta, Design and synthesis of imidazolo-1, 2,3-triazoles hybrid compounds by microwave-assisted method: Evaluation as an antioxidant and antimicrobial agents and molecular docking studies, Journal of Molecular Structure 1180 (2019) 618-628.
[27]  M. Taha, M.S. Baharudin, N.H. Ismail, S. Imran, M.N. Khan, F. Rahim, M. Selvaraj, S. Chigurupati, M. Nawaz, F. Qureshi, S. Vijayabalan, Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives, Bioorganic Chemistry 80 (2018) 36-42.
[28]  D.S. Biovia, Discovery studio modeling environment, Release, 2017.
[29]  M.A. Yilmaz, A. Ertas, I. Yener, M. Akdeniz, O. Cakir, M. Altun, I. Demirtas, M. Boga, H. Temel, A comprehensive LC–MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala, J. Pharm. Biomed. Anal. 154 (2018) 413-424.
[30]  S.Y. Lee, E. Moon, S.Y. Kim, K.R. Lee, Quinic acid derivatives from Pimpinella brachycarpa exert anti-neuroinflammatory activity in lipopolysaccharide-induced microglia, Bioorg. Med. Chem. Lett. 23(7) (2013) 2140-2144.
[31]  A. Farah, C.M. Donangelo, Phenolic compounds in coffee, Brazilian journal of plant physiology 18(1) (2006) 23-36.
[32]  S. Ahmed, A.J. Al-Rehaily, P. Alam, A.S. Alqahtani, S. Hidayatullah, M.T. Rehman, R.A. Mothana, S.S. Abbas, M. Khan, J.M. Khalid, Antidiabetic, antioxidant, molecular docking and HPTLC analysis of miquelianin isolated from Euphorbia schimperi C. Presl, Saudi Pharmaceutical Journal 27(5) (2019) 655-663.
[33]  Y. Dönder, T.B. Arikan, M. Baykan, M. Akyüz, A.B. Öz, Effects of quercitrin on bacterial translocation in a rat model of experimental colitis, Asian Journal of Surgery 41(6) (2018) 543-550.
[34]  T. Koeduka, K. Sugimoto, B. Watanabe, N. Someya, D. Kawanishi, T. Gotoh, R. Ozawa, J. Takabayashi, K. Matsui, J. Hiratake, Bioactivity of natural O‐prenylated phenylpropenes from I llicium anisatum leaves and their derivatives against spider mites and fungal pathogens, Plant Biology 16(2) (2014) 451-456.
[35]  M.N. Bingol, E. Bursal, LC-MS/MS Analysis of Phenolic Compounds and In Vitro Antioxidant potential of Stachys lavandulifolia Vahl. var. brachydon Boiss, International Letters of Natural Sciences (2018) 28.
[36]  E. Köksal, H. Tohma, Ö. Kılıç, Y. Alan, A. Aras, I. Gülçin, E. Bursal, Assessment of antimicrobial and antioxidant activities of Nepeta trachonitica: analysis of its phenolic compounds using HPLC-MS/MS, Scientia pharmaceutica 85(2) (2017) 24.
[37]  C. Pena-Bautista, M. Baquero, M. Vento, C. Chafer-Pericas, Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers, Clin. Chim. Acta 491 (2019) 85-90.
[38]  I.O. Alisi, A. Uzairu, S.E. Abechi, S.O. Idris, Evaluation of the antioxidant properties of curcumin derivatives by genetic function algorithm, Journal of Advanced Research 12 (2018) 47-54.
[39]  R. Gautam, K.V. Karkhile, K.K. Bhutani, S.M. Jachak, Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis, Planta Med. 76(14) (2010) 1564-1569.
[40]  Y. Chen, H. Lin, H. Yang, R. Tan, Y. Bian, T. Fu, W. Li, L. Wu, Y. Pei, H. Sun, Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening, RSC Advances 7(6) (2017) 3429-3438.
[41]  İ. Gülçin, A. Scozzafava, C.T. Supuran, Z. Koksal, F. Turkan, S. Çetinkaya, Z. Bingöl, Z. Huyut, S.H. Alwasel, Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes, Journal of enzyme inhibition and medicinal chemistry 31(6) (2016) 1698-1702.
[42]  İ. Gülçin, A. Scozzafava, C.T. Supuran, H. Akıncıoğlu, Z. Koksal, F. Turkan, S. Alwasel, The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII, Journal of enzyme inhibition and medicinal chemistry 31(6) (2016) 1095-1101.
[43]  S. Burmaoglu, A.O. Yilmaz, M.F. Polat, R. Kaya, İ. Gulcin, O. Algul, Synthesis and biological evaluation of novel tris-chalcones as potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibitors, Bioorg. Chem. 85 (2019) 191-197.
[44]  G. Gondolova, P. Taslimi, A. Medjidov, V. Farzaliyev, A. Sujayev, M. Huseynova, O. Şahin, B. Yalçın, F. Turkan, İ. Gulçin, Synthesis, crystal structure and biological evaluation of spectroscopic characterization of Ni (II) and Co (II) complexes with N‐salicyloil‐N′‐maleoil‐hydrazine as anticholinergic and antidiabetic agents, Journal of biochemical and molecular toxicology 32(9) (2018) e22197.
[45]  H. van de Waterbeemd, E. Gifford, ADMET in silico modelling: towards prediction paradise?, Nature Reviews Drug Discovery 2(3) (2003) 192-204.
[46]  M. Corvaro, M. Bartels, The ADME profile of the fungicide tricyclazole in rodent via the oral route: A critical review for human health safety assessment, Regulatory Toxicology and Pharmacology 108 (2019) 104438.
[47]  M.M. Morcoss, E.S.M.N. Abdelhafez, R.A. Ibrahem, H.M. Abdel-Rahman, M. Abdel-Aziz, D.A. Abou El-Ella, Design, synthesis, mechanistic studies and in silico ADME predictions of benzimidazole derivatives as novel antifungal agents, Bioorganic Chemistry 101 (2020) 103956.
[48]  C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J.J.A.d.d.r. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, 23(1-3) (1997) 3-25.
[49]  Q. Cao, Y. Huang, Q.-F. Zhu, M. Song, S. Xiong, A. Manyande, H. Du, The mechanism of chlorogenic acid inhibits lipid oxidation: An investigation using multi-spectroscopic methods and molecular docking, Food Chemistry (2020) 127528.
[50]  P. Śledź, A. Caflisch, Protein structure-based drug design: from docking to molecular dynamics, Current Opinion in Structural Biology 48 (2018) 93-102.
[51]  S.E. Yazdi, G. Prinsloo, H.M. Heyman, C.B. Oosthuizen, T. Klimkait, J.J.M. Meyer, Anti-HIV-1 activity of quinic acid isolated from Helichrysum mimetes using NMR-based metabolomics and computational analysis, South African Journal of Botany 126 (2019) 328-339.
[52]  D. Son, C.S. Kim, K.R. Lee, H.-J. Park, Identification of new quinic acid derivatives as histone deacetylase inhibitors by fluorescence-based cellular assay, Bioorganic & Medicinal Chemistry Letters 26(9) (2016) 2365-2369.
[53]  S. Pleško, H. Volk, M. Lukšič, Č. Podlipnik, In Silico Study of Plant Polyphenols' Interactions with VP24-Ebola Virus Membrane-associated Protein, Acta chimica Slovenica 62(3) (2015) 555-64.
[54]  E.R. da Silva, C.d.C. Maquiaveli, P.P. Magalhães, The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase, Experimental Parasitology 130(3) (2012) 183-188.
[55]  S.P. Singh, B.K. Konwar, Molecular docking studies of quercetin and its analogues against human inducible nitric oxide synthase, Springerplus 1(1) (2012) 69-69.
[56]  M.G. Maharani, S.R. Lestari, B. Lukiati, Molecular docking studies flavonoid (quercetin, isoquercetin, and kaempferol) of single bulb garlic (Allium sativum) to inhibit lanosterol synthase as anti-hypercholesterol therapeutic strategies, 2231(1) (2020) 040021.