[1] | Mir, S. A., Shah, M. A., Mir, M. M., Dar, B. N., Greiner, R., & Roohinejad, S. (2018). Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control, 85, 235-244. |
|
[2] | FDA. (2018). FDA Food Safety Modernization Act (FSMA). Retrieved from https://www.fda.gov/Food/GuidanceRegulation/FSMA/default.htm. |
|
[3] | Inyinbor, A. A., Bello, O. S., Oluyori, A. P., Inyinbor, H. E., & Fadiji, A. E. (2019). Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control, 98(September 2018), 489-500. |
|
[4] | Losio, M. N., Pavoni, E., Bilei, S., Bertasi, B., Bove, D., Capuano, F., … De Medici, D. (2015). Microbiological survey of raw and ready-to-eat leafy green vegetables marketed in Italy. International Journal of Food Microbiology, 210, 88-91. |
|
[5] | Tambekar, D. H., & Mundhada, R. H. (2006). Bacteriological quality of salad vegetables sold in Amravati City (India). Journal of Biological Sciences. |
|
[6] | Hilborn, E. D., Mermin, J. H., Mshar, P. A., Hadler, J. L., Voetsch, A., Wojtkunski, C., … Slutsker, L. (1999). A multistate outbreak of Escherichia coli O157:H7 infections associated with consumption of mesclun lettuce. Archives of Internal Medicine, 159(15), 1758-1764. |
|
[7] | Johnson, R. (2019). Foodborne Illnesses and Outbreaks from Fresh Produce. |
|
[8] | Marder, E. P., Griffin, P. M., Cieslak, P. R., Dunn, J., Hurd, S., Jervis, R., … Geissler, A. L. (2018). Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly Through Food — Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006-2017. Morbidity and Mortality Weekly Report Cases, 67(11), 324-328. |
|
[9] | FAO/WHO. (2008). Microbiological hazards in fresh fruits and vegetables. Food and Agriculture Organization of the United Nations / World Health Organization. |
|
[10] | Van de Venter, T. (2000). Emerging food-borne diseases: a global responsibility. Fna|ana, 26, 4-13. |
|
[11] | WHO. (2019). Food safety. Retrieved December 26, 2019, from https://www.who.int/news-room/fact-sheets/detail/food-safety. |
|
[12] | Faour-Klingbeil, D., Kuri, V., & Todd, E. (2015). Investigating a link of two different types of food business management to the food safety knowledge, attitudes and practices of food handlers in Beirut, Lebanon. Food Control, 55, 166-175. |
|
[13] | Abakari, G., Cobbina, S. J., & Yeleliere, E. (2018). Microbial quality of ready-to-eat vegetable salads vended in the central business district of tamale, Ghana. International Journal of Food Contamination, 5(1). |
|
[14] | CFS. (2014). Microbiological Guidelines for Food (Vol. 2014). Queensway, Hong Kong. |
|
[15] | Bernasconi, C., Daverio, E., & Ghiani, M. (2003). Microbiology Dimension in EU Water Directives. Ispra. |
|
[16] | Baylis, C., Uyttendaele, M., Joosten, H., Davies, A., & Heinz, H. J. (2011). The Enterobacteriaceae and their significance to the food industry. ILSI Europe Report Series. Brussels. |
|
[17] | Patel, A. K., Singhania, R. R., Pandey, A., Joshi, V. K., Nigam, P. S., & Soccol, C. R. (2014). Enterobacteriaceae, Coliforms and E.Coli: Introduction. Encyclopedia of Food Microbiology: Second Edition, 1, 659-66. |
|
[18] | Smith, J. L., & Fratamico, P. M. (2015). Escherichia coli and Other Enterobacteriaceae: Food Poisoning and Health Effects. Encyclopedia of Food and Health (1st ed.). Elsevier Ltd. |
|
[19] | Nagarjun, P. A., & Rao, P. N. (2015). Original Research Article Identification of Novel Food Borne Pathogen , Enterobacteriaceae Bacterium from Fresh Vegetables and Egg Products. International Journal of Current Microbiology and Applied Sciences, 4(7), 54-64. |
|
[20] | Alamer, S., Chinnappan, R., & Zourob, M. (2017). Development of Rapid Immuno-based Nanosensors for the Detection of Pathogenic Bacteria in Poultry Processing Plants. Procedia Technology, 27, 23-26. |
|
[21] | Elmerdahl Olsen, J. (2000). DNA-based methods for detection of food-borne bacterial pathogens. Food Research International, 33(3-4), 257-266. |
|
[22] | Health Protection Agency. (2004). Enumeration of Enterobacteriaceae by the colony count technique. National Standard Method, F 23(1), 1-11. |
|
[23] | Cantón, R., & Gómez G. de la Pedrosa, E. (2017). Economic impact of rapid diagnostic methods in Clinical Microbiology: Price of the test or overall clinical impact. Enfermedades Infecciosas y Microbiologia Clinica (English Ed.), 35(10), 659-666. |
|
[24] | Cox, K. L. (2011). Immunoassay Development, Optimization and Validation Flow Chart. ImmunoAssay Methods, (Md), 1-38. |
|
[25] | Darwish, I. A. (2006). Immunoassay Methods and their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. International Journal of Biomedical Science : IJBS, 2(3), 217-35. |
|
[26] | De Boer, E., & Beumer, R. R. (1999). Methodology for detection and typing of foodborne microorganisms. International Journal of Food Microbiology, 50(1-2), 119-130. |
|
[27] | Xu, M., Wang, R., & Li, Y. (2017). Electrochemical biosensors for rapid detection of Escherichia coli O157:H7. Talanta, 162(October 2016), 511-522. |
|
[28] | Zhao, X., Lin, C. W., Wang, J., & Oh, D. H. (2014). Advances in rapid detection methods for foodborne pathogens. Journal of Microbiology and Biotechnology, 24(3), 297-312. |
|
[29] | Bizzini, A., & Greub, G. (2010). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clinical Microbiology and Infection, 16(11), 1614-1619. |
|
[30] | Croxatto, A., Prod’hom, G., & Greub, G. (2012). Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiology Reviews, 36(2), 380-407. |
|
[31] | Lartigue, M. F. (2013). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for bacterial strain characterization. Infection, Genetics and Evolution, 13(1), 230-235. |
|
[32] | Murray, P. R. (2010). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Usefulness for taxonomy and epidemiology. Clinical Microbiology and Infection, 16(11), 1626-1630. |
|
[33] | NT, M., & I, B. (2015). MALDI-TOF Mass Spectrometry as a Tool for Epidemiological Outbreak Analysis â“ Can it Work? Journal of Medical Diagnostic Methods, 04(04). |
|
[34] | Rodríguez-Sánchez, B., Alcalá, L., Marín, M., Ruiz, A., Alonso, E., & Bouza, E. (2016). Evaluation of MALDI-TOF MS (Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry) for routine identification of anaerobic bacteria. Anaerobe, 42, 101-107. |
|
[35] | Angeletti, S. (2017, July 1). Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. Journal of Microbiological Methods. Elsevier B.V. |
|
[36] | Cattani, M. E., Posse, T., Hermes, R. L., & Kaufman, S. C. (2015). Identificación rápida de microorganismos de frascos de hemocultivos por espectrometría de masas. Comparación de 2 procedimientos diagnósticos. Revista Argentina de Microbiologia, 47(3), 190-195. |
|
[37] | Faron, M. L., Buchan, B. W., & Ledeboer, N. A. (2019). Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Use with Positive Blood Cultures: Methodology, Performance, and Optimization. Journal of Clinical Microbiology, 32(1), 1-29. |
|
[38] | Steensels, D., Verhaegen, J., & Lagrou, K. (2011, May). Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for the identifi cation of bacteria and yeasts in a clinical microbiological laboratory: A review. Acta Clinica Belgica. |
|
[39] | Yang, Y., Lin, Y., & Qiao, L. (2018). Direct MALDI-TOF MS Identification of Bacterial Mixtures. Analytical Chemistry, 90(17), 10400-10408. |
|
[40] | Macaza, B. S. (2017). Avaliação da qualidade e segurança microbiológica de alimentos de rua vendidos nos mercados municipais da cidade de Nampula, Moçambique. Mestrado em Alimentação Coletiva. Universidade do Porto. |
|
[41] | Shiningeni, D., Chimwamurombe, P., Shilangale, R., & Misihairabgwi, J. (2019). Prevalence of pathogenic bacteria in street vended ready-to-eat meats in Windhoek, Namibia. Meat Science, 148, 223-228. |
|
[42] | Puerta-García, A., & Mateos-Rodríguez, F. (2010). Enterobacterias. Medicine, 10(51), 3426-3431. |
|
[43] | Cordier, J.-L. (2006). Enterobacteriaceae. Emerging Foodborne Pathogens. |
|
[44] | Sahuquillo-Arce, J. M., Chouman-Arcas, R., Molina-Moreno, J. M., Hernández-Cabezas, A., Frasquet-Artés, J., & López-Hontangas, J. L. (2017). Capnophilic Enterobacteriaceae. Diagnostic Microbiology and Infectious Disease, 87(4), 318-319. |
|
[45] | Bagley, S. T. (1985). Habitat association of Klebsiella species. Infection Control. |
|
[46] | Eugene Sanders, W. E., & Sanders, C. C. (1997). Enterobacter spp.: Pathogens poised to flourish at the turn of the century. Clinical Microbiology Reviews, 10(2), 220-241. |
|
[47] | Guentzel, M. N. (1996). Escherichia, Klebsiella, Enterobacter, Serratia, Citrobacter,and Proteus. Medical Microbiology. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21413290. |
|
[48] | Liu, S., & Kilonzo-Nthenge, A. (2017). Prevalence of multidrug-resistant bacteria from U.S.-grown and imported fresh produce retailed in chain supermarkets and ethnic stores of Davidson County, Tennessee. Journal of Food Protection, 80(3), 506-514. |
|
[49] | Paudyal, N., Anihouvi, V., Hounhouigan, J., Matsheka, M. I., Sekwati-Monang, B., Amoa-Awua, W., … Fang, W. (2017). Prevalence of foodborne pathogens in food from selected African countries - A meta-analysis. International Journal of Food Microbiology, 249, 35-43. |
|
[50] | Puspanadan, S., Afsah-Hejri, L., Loo, Y. ., Nillian, E., Kuan, C. ., Goh, S. G., … Nishibuchi, M. (2012). Detection of Klebsiella pneumoniae in raw vegetables using Most Probable Number-Polymerase Chain Reaction (MPN-PCR). International Food Research Journal, 19(4), 1757-1762. |
|
[51] | WHO. (2011). Guidelines for Drinking-water Quality (Fourth). Switzerland: WHO. |
|
[52] | Dos Reis, R. S., & Horn, F. (2010). Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: Cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathogens, 2(1). |
|
[53] | Ssemanda, J. N., Reij, M., Bagabe, M. C., Muvunyi, C. M., Joosten, H., & Zwietering, M. H. (2017). Indicator microorganisms in fresh vegetables from “farm to fork” in Rwanda. Food Control, 75, 126-133. |
|
[54] | ICMSF. (2006). A Simplified Guide to Understanding and Using Food Safety Objectives and Performance Objectives. ICMSF. |
|
[55] | Najafi, M. B. H., & Bahreini, M. (2012). Microbiological Quality of Mixed Fresh-Cut Vegetable Salads and Mixed Ready- to-Eat Fresh Herbs in Mashhad , Iran. International Conference on Nutrition and Food Sciences IPCBEE, 39(2012), 62-66. Retrieved from http://ipcbee.com/vol39/012-ICNFS2012-N022.pdf. |
|
[56] | Denis, N., Zhang, H., Leroux, A., Trudel, R., & Bietlot, H. (2016). Prevalence and trends of bacterial contamination in fresh fruits and vegetables sold at retail in Canada. Food Control, 67, 225-234. |
|
[57] | Kundu, A., Wuertz, S., & Smith, W. A. (2018). Quantitative microbial risk assessment to estimate the risk of diarrheal diseases from fresh produce consumption in India. Food Microbiology, 75, 95-102. |
|
[58] | Food Standards Australia New Zealand. (2018). Compendium of microbiological criteria for food. Compendium of Microbiological Criteria for Food. |
|
[59] | Azevedo, P. A. A., Furlan, J. P. R., Oliveira-Silva, M., Nakamura-Silva, R., Gomes, C. N., Costa, K. R. C., … Pitondo-Silva, A. (2018). Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil. Brazilian Journal of Microbiology, 49, 224-228. |
|
[60] | Soltan Dallal, M. M., Shojaei, M., Sharifi Yazdi, M. K., & Vahedi, S. (2015). Microbial contamination of fresh vegetable and salad samples consumed in Tehran, Iran. Journal of Food Quality and Hazards Control, 2(4), 139-143. |
|
[61] | Tallon, P. A. M., Magajna, B., Lofranco, C., & Leung, K. A. M. T. I. N. (2005). MICROBIAL INDICATORS OF FAECAL CONTAMINATION IN WATER : A CURRENT PERSPECTIVE Ensuring the safety of drinking water is an ongoing process . In developed coun- tries , drinking water regulations require the monitoring of numerous chemical and microbiologic. Public Health, 166(Table I), 139-166. |
|
[62] | Chauhan, A., Goyal, P., Varma, A., & Jindal, T. (2017). Microbiological evaluation of drinking water sold by roadside vendors of Delhi, India. Applied Water Science, 7(4), 1635-1644. |
|
[63] | Onyango, A. E., Okoth, M. W., Kunyanga, C. N., & Aliwa, B. O. (2018). Microbiological Quality and Contamination Level of Water Sources in Isiolo County in Kenya. Journal of Environmental and Public Health, 2018. |
|
[64] | Yousefi, M., Saleh, H. N., Yaseri, M., Mahvi, A. H., Soleimani, H., Saeedi, Z., … Mohammadi, A. A. (2018). Data on microbiological quality assessment of rural drinking water supplies in Poldasht county. Data in Brief, 17, 763-769. |
|
[65] | WHO. (1997). Guidelines for drinking-water quality (Vol. 3). Geneva. |
|
[66] | WHO. (2018a). Drinking-water. Retrieved September 21, 2018, from http://www.who.int/news-room/fact-sheets/detail/drinking-water. |
|
[67] | Jafari, K., Mohammadi, A. A., Heidari, Z., Asghari, F. B., Radfard, M., Yousefi, M., & Shams, M. (2018). Data on microbiological quality assessment of rural drinking water supplies in Tiran County, Isfahan province, Iran. Data in Brief, 18, 1122-1126. |
|
[68] | Dewaal, C. S., Robert, N., Witmer, J., & Tian, X. A. (2010). A Comparison of the Burden of Foodborne and Waterborne Diseases in Three World Regions , 2008. Food Protection Trends, 30(8), 483-490. |
|
[69] | Mengel, M. A., Delrieu, I., Heyerdahl, L., & Gessner, B. D. (2014). Cholera Outbreaks in Africa (pp. 117-144). |
|
[70] | Nienie, A. B., Sivalingam, P., Laffite, A., Ngelinkoto, P., Otamonga, J. P., Matand, A., … Poté, J. (2017). Microbiological quality of water in a city with persistent and recurrent waterborne diseases under tropical sub-rural conditions: The case of Kikwit City, Democratic Republic of the Congo. International Journal of Hygiene and Environmental Health, 220(5), 820-828. |
|
[71] | WHO. (2018b). Guidelines on sanitation and health. World Health Organization. Retrieved from |
|
[72] | https://apps.who.int/iris/bitstream/handle/10665/274939/9789241514705-eng.pdf?ua=1. |
|
[73] | Lues, J. F. R., & Van Tonder, I. (2007). The occurrence of indicator bacteria on hands and aprons of food handlers in the delicatessen sections of a retail group. Food Control, 18(4), 326-332. |
|
[74] | Kilonzo-Nthenge, A., Rotich, E., Godwin, S., Nahashon, S., & Chen, F. (2012). Prevalence and antimicrobial resistance of cronobacter sakazakii isolated from domestic kitchens in middle Tennessee, United States. Journal of Food Protection, 75(8), 1512-1517. |
|
[75] | Rakhshkhorshid, M., Rakhshkhorshid, A., & Belarak, D. (2016). Survey of cooking utensils and dishes microbial contamination rate in the cafeteria of Zahedan University of medical sciences, 2015. International Journal of Biomedical and Healthcare Science, 6(2), 187-193. |
|
[76] | Alum, Akanele, E., Mgbo, S., Chukwu, O., & Ahudie, C. M. (2016). Microbiological Contamination Of Food: The Mechanisms, Impacts And Prevention. International Journal of Scientific & Technology Research, 5(3), 65-78. |
|
[77] | Nasrolahei, M., Mirshafiee, S., Kholdi, S., Salehian, M., & Nasrolahei, M. (2017). Bacterial assessment of food handlers in Sari City, Mazandaran Province, north of Iran. Journal of Infection and Public Health, 10(2), 171-176. |
|
[78] | Honua, M. H. M. (2018). The bacterial contamination of food handlers hands in Wad madani city restaurants, Sudan. International Journal Of Community Medicine And Public Health, 5(4), 1270. |
|
[79] | Mengist, A., Mengistu, G., & Reta, A. (2018). Prevalence and antimicrobial susceptibility pattern of Salmonella and Shigella among food handlers in catering establishments at Debre Markos University, Northwest Ethiopia. International Journal of Infectious Diseases, 75, 74-79. |
|
[80] | Gebreyesus, A., Adane, K., Negash, L., Asmelash, T., Belay, S., Alemu, M., & Saravanan, M. (2014). Prevalence of Salmonella typhi and intestinal parasites among food handlers in Mekelle University student cafeteria, Mekelle, Ethiopia. Food Control, 44, 45-48. |
|
[81] | Alhashimi, H. M. M., Ahmed, M. M., & Mustafa, J. M. (2017). Nasal carriage of enterotoxigenic Staphylococcus aureus among food handlers in Kerbala city. Karbala International Journal of Modern Science, 3(2), 69-74. |
|
[82] | Castro, A., Santos, C., Meireles, H., Silva, J., & Teixeira, P. (2016). Food handlers as potential sources of dissemination of virulent strains of Staphylococcus aureus in the community. Journal of Infection and Public Health, 9(2), 153-160. |
|
[83] | Karaye, G., Karaye, K., & Kaze, P. (2019). Detection of Escherichia Coli in Freshly Harvested Spinach Samples Collected from Five Different Markets in Zaria. American Journal of Biomedical Science & Research, 4(2), 112-115. |
|
[84] | Reuben, C. R., & Makut, M. D. (2014). Occurrence of Escherichia coli O157 : H7 in vegetables grown and sold in Lafia metropolis , Nigeria. Wordl Hournal of Microbiology, 1(3), 17-21. |
|
[85] | Saeed, A. Y. (2013). Detection of Escherichia coli O157 in vegetables. IOSR Journal of Agriculture and Veterinary Science, 6(2), 16-18. |
|
[86] | Shakerian, A., Rahimi, E., & Emad, P. (2016). Vegetables and restaurant salads as a reservoir for Shiga toxigenic Escherichia coli: Distribution of virulence factors, O-serogroups, and antibiotic resistance properties. Journal of Food Protection, 79(7), 1154-1160. |
|
[87] | Maistro, L. C., Miya, N. T. N., Sant’Ana, A. S., & Pereira, J. L. (2012). Microbiological quality and safety of minimally processed vegetables marketed in Campinas, SP - Brazil, as assessed by traditional and alternative methods. Food Control, 28(2), 258-264. |
|
[88] | Uzeh, R. E., & Adepoju, A. (2013). Incidence and survival of Escherichia coli O157: H7 and Listeria monocytogenes on salad vegetables. International Food Research Journal, 20(4), 1921-1925. |
|
[89] | Entani, E., Asai, M., Tsujihata, S., Tsukamoto, Y., & Ohta, M. (1998). Antibacterial action of vinegar against food-borne pathogenic bacteria including Escherichia coli O157:H7. Journal of Food Protection, 61(8), 953-959. |
|
[90] | Lee, S. Y., Rhee, M. S., Dougherty, R. H., & Kang, D. H. (2010). Antagonistic effect of acetic acid and salt for inactivating Escherichia coli O157:H7 in cucumber puree. Journal of Applied Microbiology, 108(4), 1361-1368. |
|
[91] | Sulaiman, M. A., Musa, B., Paul, M., Aliyu, M. S., & Tijjani, M. B. (2016). Potential Risk of Transmitting Escherichia coli O157 : H7 through Some Vegetables Sold in Zaria Metropolis. Ujmr, 1(1), 169-174. |
|