[1] | Nayak BS, Marshall JR, Isitor G, Adogwa A (2011) Hypoglycemic and hepatoprotective activity of fermented fruit juice of Morinda citrifolia (Noni) in diabetic rats. Evid Based Complement Alternat Med. |
|
[2] | Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AE. (2008). Ethnobotanical studies of medicinal plants used in the management of 2 diabetes: an analysis of the ACCORD randomized trial 376:419-30. |
|
[3] | Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y (2007) Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 9:355-66. |
|
[4] | Patricia O, Marıa M, Ana A, Rebeca F, Fernando D , Celestin G (2006) Insulin sensitivity in streptozotocin-induced diabetic rats treated with different doses of 17β-oestradiol progesterone. Exp Physiol 92:241-49. |
|
[5] | Szabat M, Lynn FC, Hoffman BG, Kieffer TJ, Allan DW , Johnson JD (2012) Maintenance of â-Cell Maturity and Plasticity in the Adult Pancreas Developmental Biology Concepts in Adult Physiology. Diabetes 61:65-71. |
|
[6] | Hart AW, Baeza N, Apelqvist A, Edlund H. (2002). Attenuation of FGF signalling in mouse â-cells leads to diabetes. Nature 408: 4-8. |
|
[7] | Shaffer AE, Taylor HR, Benthuysen JR, Liu J, Thorel F , Yuan W (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic beta cell identity. PLoS Genet 9: 1-15. |
|
[8] | Shrilatha B , Muralidhara N. (2007). Early oxidative stress in testis and epididymal sperm in streptozotocin- induced diabetic mice: its progression and genotoxic consequences. Reprod Toxicol 23: 578-87. |
|
[9] | Hosokawa M, Dolci W, Thorens D. (2001). Differential sensitivity of GLUT1- and GLUT2-expressing beta cells to streptozotocin. Biochem Biophys Res Commun 289: 1114-17. |
|
[10] | Lenzen S (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes,” Diabetologia 51: 216-26. |
|
[11] | Dufrane D, Van Steenberghe M, Guiot Y, Goebbels RM, Saliez A , Gianello P. (2006). Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and cell plasticity. Transplantation 81:36-45. |
|
[12] | Kramer J, Moeller EL, Hachey A, Mansfield KG, Wachtman LM. (2009). Differential expression of GLUT2 in pancreatic islets and kidneys of Newand Old World nonhuman primates Am J Physiol Regul Integr Comp Physiol 296:786-93. |
|
[13] | Laukkanen O, Lindstr¨om J, Eriksson J. (2005). Polymorphisms in the SLC2A2 (GLUT2) gene is associated with the conversion from impaired glucose tolerance to type 2 diabetes: The Finnish Diabetes Prevention Study. Diabetes 54:2256-60. |
|
[14] | Ismail BF, Craven T, Banerji MA. (2010). Effect of intensive treatment of hyperglycemia on microvascular outcomes in type on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomized trial. Lancet 7:419-30. |
|
[15] | Cho SY, Park JY, Park EM, Cho MS, Lee MK, Jeon SM, Kim MJ, Park YB. (2002). Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin Chim Acta. 317: 109-17. |
|
[16] | Awanish P, Poonam T, Rishabh P, Rashmi S, Shambaditya G. (2011). Alternative therapies useful in the management of diabetes: A systematic review. J Pharm Bioallied Sci 3: 504-12. |
|
[17] | Brand T, Brandt DA. (2002). Alkaloid content of South African lupins (L. luteus, L. albus and L angustifolius species) and determination thereof of by near infra-red reflectance spectroscopy. S Afr J Anim Sci 1: 11-12. |
|
[18] | Mansour HA, Newairy AA, Yousef MI, Sheweita SA. (2002). Biochemical study on the effects of some Egyptian herbs in alloxan- induced diabetic rats. Toxicol 170: 221-28. |
|
[19] | Oraby FS, Hussein Farrag R, Khalil MY, Hussein JS, Abou El-Soud NHA. (2008). Hypoglycemic effect of selected herbal extracts on streptozotocin induced diabetic rats. J Appl Sci Res 4(12): 2001-12. |
|
[20] | Pereira FC, Ouedraogo R, Lebrun P, Barbosa, RM, Cunha AP, Santos RM, Rosario LM. (2001). Insulinotropic action of white Lupine seeds (Lupinus albus L): effects on ion fluxes and insulin secretion from isolated pancreatic islets. Biomed Res 22(2): 23. |
|
[21] | Terruzzi I, Senesi P, Magni C, Montesano A, Scarafoni A, Luzi L, Duranti M. (2011). Insulin-mimetic action of conglutin-γ, a lupin seed protein, in mouse myoblasts. Nutr Metab Cardiovas 21: 197-205. |
|
[22] | Bertoglio JC, Calvo MA, Hancke JL, Burgos RA, Riva A, Morazzoni P, Ponzone C, Magni C, Duranti M (2011). Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82: 933-38. |
|
[23] | Basma HM, Walaa FA, Yousef YE, Nabil AH. (2015). Protective Role of Wheat Germ Oil against Hyperglycemia and Hyperlipidemia in Streptozotocin Induced Diabetic Rats. Asian Journal of Animal and Veterinary advances 10 (12): 852-864. |
|
[24] | Eman GEH, Samia MA, Tarek AA, Anwaar AM. (2013). Hypoglycemic Effect of the Aqueous Extracts of Lupinus albus, Medicagosativa (Seeds) and Their Mixture on Diabetic Rats. The Egyptian Journal of Hospital Medicine 25: 685-698. |
|
[25] | Mohamed TM, Mojtaba GJ, Mohamed HM, Mehdi RB, Mahvash J, Fatemeh S. (2013). Atorvastatin inhibits brain oxidative stress of streptozotocin-induced diabetic rat. Exp Appl Anim Sci 1: 35-43. |
|
[26] | Szudelskit T. (2001). The mechanism of alloxan and streptozotozin action in B cells of the rat pancreas. Physiol Res 50: 537-46. |
|
[27] | Murthy H, Dandin V, Lee E, Paek K. (2014). Efficacy of ginseng adventitious root extract on hyperglycemia in streptozotocin-induced diabetic rats. J Ethnopharmacol. 153: 917-21. |
|
[28] | Anderson L, Dinesen B, Joresen PN, Poulsen F, Roder MF. (1993). Enzyme immune assay for intact human insulin in serum or plasma. Clin Chim Acta 38: 578-85. |
|
[29] | Hanas R, John G. (2010). Consensus statement on the worldwide standardization of the hemoglobin A1c measurement. Clin Chem Lab Med 48:775-76. |
|
[30] | Ellefson RE and Caraway WT. (1976). Lipids and lipoproteins, "in fundamentals of clinical chemistry. Edited by Norbert and Tietz Philadelphia, Saunders. |
|
[31] | Bucolo G, David H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 19: 476-82. |
|
[32] | Friedewald WT, Levy RI, Fredrickson DS. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge 18(6): 499-50. |
|
[33] | Alkaladi A, Abdelazem A, Afifi M. (2014). Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15: 2015-23. |
|
[34] | Claudia S, Jesús J, Julia P, Imelda G, Ana E, Esther U, Salud P, Luis R. (2014). Insulin gene expression and its detection in the rat kidney. IJLRST 3(3):221- 27. |
|
[35] | Pfaffl MW. (2001). A new mathematical model for relative quantification in real time RT-PCR. Nuc Acids Res 29: 2002-7. |
|
[36] | SPSS PC (2004) SPSS for windows release 17 SPSS. Inc. USA |
|
[37] | Livak KJ, Schmittgen TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-8. |
|
[38] | Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH. (2009). The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. Lipid Res 50: 189-94. |
|
[39] | Delmastro MM, Piganelli JD (2011) Oxidative stress and redox modulation potential in type 1 diabetes. Clin. Dev. Immunol. |
|
[40] | Lyra R, Oliveira M, Lins D, Cavalcanti N. (2006). Prevention of type 2 diabetes mellitus. Arq Bras Endocrinol Metabo 50: 239-49. |
|
[41] | Srivastava N, Tiwari G, Tiwari R, Bhati LK, Awani K. (2013). Neutraceutical approaches to control diabetes. Natural Sci Biol Med 3 (2): 168-76. |
|
[42] | Waqar MA, Aijaz S, Shaukat S, Waqar A. (2009). Herbs can effectively talk with diabetogenes. Chem Soc Pakistan 31:677-87. |
|
[43] | Daisy P, Jasmine R, Ignacimuthu S. (2009). A novel Steroid1 from Elephantopus scaber L. an Ethnomedicinal plant with antidiabetic activity. Phytomed 16: 252-57. |
|
[44] | Aguilar-Santamaria L, Ramirez G, Nicosio P, Alegria-Reyes CA, Herrera-Arellano D. (2009). Antidiabetic activities of Tecomastans (L.) Juss. Ex Kunth. J Ethnopharmacol 10: 1010-16. |
|
[45] | Gupta S, Sharma SB, Bansal SK, Prabhu KM. (2009). Antihyperglycemic and hypolipidemic activity of aqueous extract of Cassia auriculata L. leaves in experimental diabetes. Ethnopharmacol 123:499-503. |
|
[46] | Zhou JY, Zhou SW, Zeng SY, Zhou JY, Jiang MJ, He Y. (2012). Hypoglycemic and hypolipidemic effects of ethanolic extract of Mirabilis jalapa L. root on normal and diabetic mice. Evid Based Complement Alternat Med 257374. |
|
[47] | Patel J, Kumar S, Patel H, Prasad AK, Iyer SV, Vaidya SK. (2012). Hypoglycaemic and hypolipidaemic potential of aerial parts of Amaranthus viridis (L.) Merr. in streptozotocin induced diabetic rats. Int J Pharm Arch 1: 1-6. |
|
[48] | Ordonez P, Moreno M, Alonso A, Fernandez R, Diaz F, Gonzalez C. (2007). Insulin sensitivity in STZ-induced diabetic rats treated with different doses of 17 beta-oestradiol or progesterone. Exp Physiol 92(1):241-49. |
|
[49] | Lenzen S. (2008). “The mechanisms of alloxan- and Streptozotocin-induced diabetes, Diabetologia 51(2): 216-26. |
|
[50] | Kumar V, Ahmed D, Anwar F, Ali M, Mujeeb M (2013) Enhanced glycemic control, pancreas protective, antioxidant and hepatoprotective effects by umbelliferon- α - D- glucopyranosyl- (2I- 1II)- α- D-glucopyranoside in streptozotocin induced diabetic rats. Springer plus 2: 639. |
|
[51] | Kumar V, Verma A, Ahmed D, Sachan NK, Anwar F, Mujeeb M. (2013). Fostered antiarthritic upshot of moringa oleifera lam. Stem bark extract in diversely induced arthritis in wistar rats with plausible mechanism. Int J Pharm Sci Res 4: 3894-901. |
|
[52] | Mansour HA, Newairy AS, Yousef M, Sheweita SA. (2002). Biochemical study on the effects of some Egyptian herbs in alloxan induced diabetic rats. Toxicol 107221-228. |
|
[53] | Bertoglio JC, Calvo MA, Hancke A, Burgos RA, Riva A, Morazzoni, P. (2011). Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82: 933-938. |
|
[54] | Rim B, Mohamed KF, Mongia B, Mouna A, Moncef F, Naziha K, Aly R, Hedia S. (2016). Effect of Lupinus albus on Glycaemic Control, Plasma Insulin Levels, Lipid Profile and Liver Enzymes in Type 2 Diabetics. J of Food and Nut Res 4(9): 615-620. |
|
[55] | Lampart-Szczapa E, Siges A, Trojanowska K, Nogalakaluckam MM, Pacholek B. (2003). Chemical composition and antibacterial activities of lupin seed extracts on streptozotocin induced diabetic rats. J Appl Sci Res 4:2001-12. |
|
[56] | Hannan JMA, Rokeya B, Faruque O. (2007). Effect of soluble dietary fiber fraction of Trigonella foenum graecumon glycemic, insulinemic, lipidemic and platelet aggregation status of type 2 diabetes mellitus in South Western Nigeria. J Ethnopharmacol 115: 67-71. |
|
[57] | Wink M, Meissner C and Witte L. (1995). Patterns of quinolizidine alkaloids in 56 species of the genus Lupinus. Phytochemistry 38:139-153. |
|
[58] | Mats W, Carmen M, Gurrola-Díaz, Belinda VG, Michael W, Pedro M, García L, Martina D. (2015). Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression. Molecules 20:19085-19100. |
|
[59] | Prentki M, Matschinsky FM. (1987). Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiol Rev 67:1185-1248. |
|
[60] | Ashcroft FM (1988) Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci 11:97-118. |
|
[61] | García-López PM, Garzón de la Mora P, Wysocka W, Maiztegui B, Alzugaray ME, del Zotto H, Borelli MI. (2004). Quinolizidine alkaloids isolated from lupinus species enhance insulin secretion. Eur J Pharmacol 504:139-142. |
|
[62] | Mansour HA, Newairy AS, Yousef M, Sheweita SA. (2002). Biochemical study on the effects of some Egyptian herbs in alloxan induced diabetic rats. Toxicol 107:221-228. |
|
[63] | Bertoglio JC, Calvo MA, Hancke A, Burgos RA, Riva A, Morazzoni, P. (2011). Hypoglycemic effect of lupin seed γ-conglutin in experimental animals and healthy human subjects. Fitoterapia 82: 933-938. |
|
[64] | Lovati MR, Manzoni C, Castiglioni S, Parolari A, Magni C, Duranti M. (2014). Lupin seed γ conglutin lowers blood glucose in hyperglycaemic rats and increases glucose consumption of HepG2 cells. Br J Nutr 107:67-73. |
|
[65] | Terruzzi I, Senesi P, Magni C, Montesano A, Scarafoni A, Luzi L. (2011). Insulin-mimetic action of conglutin-γ, a lupin seed protein, in mouse myoblasts. Nutr Metab Cardiovasc Dis 21:197-205. |
|
[66] | Neelakantan N, Narayanan M, De Souza RJ and Van Dam RM. (2014). Effect of fenugreek (Trigonella foenumgraecum L) intake on glycemia: a meta-analysis of clinical trials. Nutr J 13:1-11. |
|
[67] | Pushpraj PN, Low HK, Mantikandan J and Tanbkh CH. (2007). Anti-diabetic effects of Cichorium intybas in streptozotocin-induced diabetic rats. Ethnopharmacol 111:430-34. |
|
[68] | Ferre P and Foufelle F. (2007). SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 68 (2): 72-82. |
|
[69] | Veerapur VP, Prabhakar KR, Parihar VK, Bansal P, Srinivasan KK, Priyadarsini KI, Unnikrishnan MK. (2010). Anti-diabetic, hypolipidemic and antioxidant activity of Dodonaea viscosa aerial parts in streptozotocin- induced diabetic rats. Int J Phyto med 2: 59-70. |
|
[70] | Shepherd J. (2005). Does statin monotherapy address the multiple lipid abnormalities in type-2 diabetes. Atheroscler 6:15-9. |
|
[71] | Shirwaikar A, Rajendran K, PunithaI SR. (2005). Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin nicotinamide induced type-2 diabetic rats. Ethnopharmacol 97:369-74. |
|
[72] | Wiedemann M, Gurrola-Díaz CM, Vargas-Guerrero B, Wink M, García-López PM, Düfer M. (2015). Lupanine Improves Glucose Homeostasis by Influencing KATP Channels and Insulin Gene Expression. Molecules 20:19085-19100. |
|
[73] | Baldeón M, Castro J, Villacrés E, Narváez L, Fornasini M. (2012). Hypoglycemic effect of cooked lupinus mutabilis and its purified alkaloids in subjects with type-2 diabetes. Nutr Hosp 27: 1261-1266. |
|
[74] | Australia New Zealand Food Authority. (2011). Lupin Alkaloids in Food: A Toxicological Review and Risk Assessment; Australia New Zealand Food Authority: Canberra, Australia; Wellington, New Zealand. |
|
[75] | Naruszewicz M, Nowicka G, Klosiewicz-Latoszek L, Arnoldi A and Sirtori C. (2006). Effect of lupin protein (Lupinus albus) on cardiovascular risk factors in smokers with mild hypercholesterolemia. Circulation 114(18): 874. |
|
[76] | Marchesi M, Parolini C, Diani E, Rigamonti E, Cornelli L, Arnoldi A, Sirtori CR, Chiesa G. (2008). Hypolipidaemic and antiatherosclerotic effects of lupin proteins in a rabbit model. Br J Nutr 100: 707-10. |
|
[77] | Redondo S, Martínez-González J, Urraca C, Tejerina T. (2011). Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis 10: 175. |
|
[78] | Sirtori CR, Lovati MR, Manzoni C, Castiglioni S, Duranti M, Magni C, Morandi S, D’Agostina A, Arnoldi A. (2004). Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase LDL receptor activity in HepG2 cells. Nutr 134: 18-23. |
|
[79] | Yoshie-Stark Y, Wäsche A (2004) In vitro binding of bile acids by lupin protein isolates and their hydrolysates. Food Chemistry 88: 179-184. |
|
[80] | Vargas-Guerrero B, García-López PM, González-Santiago AE, Domínguez-Rosales JA, Gurrola-Díaz CM. (2013). Reduction of Ins-1 gene expression and tissue insulin levels in n5-STZ rats. Biol Res 46(3): 281-288. |
|
[81] | Haytham A, Ali Omar A, Almaghrabi O, Mohamed E. (2014). Molecular mechanisms of anti-hyperglycemic effects of Costus speciosus extract in streptozotocin-induced diabetic Rats. Saudi Med J 35(12): 1501. |
|