[1] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15(1979), 51-88. |
|
[2] | L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7(1956), 28-33. |
|
[3] | F. Qi, D. V. Dolgy, T. Kim, C. S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Global Journal of Pure and Applied Mathematics, 11(2015), 2407-2412. |
|
[4] | T. Kim, Barnes' type multiple degenerate Bernoulli and Euler polynomials, Appl. Math. Comput. 258(2015), 556-564. |
|
[5] | H. Ozden, I. N. Cangul, Y. Simsek, Remarks on q-Bernoulli numbers associated with Daehee numbers, Adv. Stud. Contemp. Math. 18(2009), no. 1, 41-48. |
|
[6] | C. S. Ryoo, A Note on the tangent numbers and polynomials, Adv. Studies Theor. Phys., 7(2013), no. 9, 447-454. |
|
[7] | C. S. Ryoo, Generalized tangent numbers and polynomials associated with p-adic integral on p, Applied Mathematical Sciences, 7(2013), no. 99, 4929-4934. |
|
[8] | C. S. Ryoo, Some identities on the (h; q)-tangent polynomials and Bernstein Polynomials, Applied Mathematical Sciences, 8(2014), no. 75, 3747-3753. |
|
[9] | C. S. Ryoo, Notes on degenerate tangent polynomials, to appear in Global Journal of Pure and Applied Mathematics, Volume 11, number 5(2015), pp. 3631-3637. |
|
[10] | P. T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theorey, 128(2008), 738-758. |
|