Physics and Materials Chemistry
ISSN (Print): 2372-7098 ISSN (Online): 2372-7101 Website: http://www.sciepub.com/journal/pmc Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
Physics and Materials Chemistry. 2015, 3(1), 12-17
DOI: 10.12691/pmc-3-1-3
Open AccessReview Article

Titanium Dioxide Nanoparticles Biosynthesis for Dye Sensitized Solar Cells application: Review

Agnes Mbonyiryivuze1, 2, , Sidiki Zongo1, 2, Abdoulaye Diallo1, 2, Sone Bertrand1, 2, Evariste Minani1, 3, Lakhan Lal Yadav1, 3, Bonex Mwakikunga1, 4, Simon Mokhotjwa Dhlamini1, 5 and Malik Maaza1, 2

1UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, Pretoria-South Africa

2Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West, Western Cape Province, South Africa

3Mathematics and Physics Department, College of Education, University of Rwanda, KG 11 Ave, Kigali, Rwanda

4CSIR- National Centre for Nano-Structured Materials, Pretoria, South Africa

5Deptartment of Physics, Florida Research Centre, University of South Africa, Florida-South Africa

Pub. Date: August 24, 2015

Cite this paper:
Agnes Mbonyiryivuze, Sidiki Zongo, Abdoulaye Diallo, Sone Bertrand, Evariste Minani, Lakhan Lal Yadav, Bonex Mwakikunga, Simon Mokhotjwa Dhlamini and Malik Maaza. Titanium Dioxide Nanoparticles Biosynthesis for Dye Sensitized Solar Cells application: Review. Physics and Materials Chemistry. 2015; 3(1):12-17. doi: 10.12691/pmc-3-1-3

Abstract

The synthesis of metallic nanoparticles is an active area of academic, application research as well and nanotechnology. Different chemical and physical procedures that are currently used for synthesis of metallic nanoparticles present many problems. These problems include generation of hazardous by-products, use of toxic solvents, and high energy consumption. Biological synthesis of nanoparticles by bacterial, fungi, yeast, and plant extract is the best alternative to develop cost effective, less labor, non-toxic using more green approach, environmentally benign nanoparticles synthesis to avoid adverse effects in many nanomaterials applications. Among the various metal oxide nanoparticles, titanium dioxide nanoparticles have wide applications for dye-sensitized solar cells, in air and water purification, due to their potential oxidation strength, high photo stability and non-toxicity. Till now, titanium dioxide (TiO2) is the cornerstone semiconductors for dye-sensitized (DSSC) nanostructured electrodes for dye-sensitized solar cells. This paper reports an overview of synthesis of TiO2 nanoparticles by biological means for dye-sensitised solar cell application.

Keywords:
titanium dioxide dye-sensitized solar cells green chemistry biosynthesis nanoparticles

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 4

References:

[1]  M. Thamima and S. Karuppuchamy, “Biosynthesis of titanium dioxide and zinc oxide nanoparticles from natural sources: A review,” Advanced Science, Engineering and Medicine, vol. 6, pp. 1-8, 2014.
 
[2]  A. Mbonyiryivuze, I. Omollo, B. D. Ngom, B. Mwakikunga, S. M. Dhlamini, E. Park and M. Maaza, “Natural dye sensitizer for Grätzel cells: Sepia melanin,” Physics and material chemistry, vol. 3, pp. 1-6, 2015.
 
[3]  A. Maurya, P. Chauhan, A. Mishra and A. K. Pandey, “Surface functionalization of TiO2 with plant extracts and their combined antimicrobial activities against E. faecalis and E. Coli,” Journal of Research Updates in Polymer Science, vol. 1, pp. 43-51, 2012.
 
[4]  M. Alhamed, A. S. Issa and A. W. Doubal, “Studying of natural dyes properties as photo- sensitizer for dye sensitizer for dye sensitized solar cells (DSSC),” Journal of electron Devices, vol. 16, pp. 1370-1383, 2012.
 
[5]  B. O’Regan and M. Gratzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, p. 737, 1991.
 
[6]  T. M. El-Agez, A. A. El Tayyan, A. Al-Kahlout, S. A. Taya and M. S. Abdel-Latif, “Dye-sensitized solar cells based on ZnO films and natural dyes,” International Journal of Materials and Chemistry, vol. 2(3), pp. 105-110, 2012.
 
[7]  Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%,” Japanese Journal of Applied Physics, vol. 45(25), pp. L638-L640, 2006.
 
[8]  J.-W. Lee, H.-B. Cho, T. Nakayama, T. Sekino, S.-I. Takana, K. Minato, T. Ueno, T. Suzuki, H. Suematsu, Y. Tokoi and K. Niihara, “Dye-sensitized solar cells using purified squid ink nanoparticles coated on TiO2 nanotubes/nanoparticles,” Journal of ceramic Society of Japan, vol. 121(1), pp. 123-127, 2013.
 
[9]  A. Hagfeldt and M. Gratzel, “Molecular photovoltaics,” Account of Chemical Research, vol. 33(5), pp. 269-277, 2000.
 
[10]  H. Nusbaumer, Alternative redox systems for the dye-sensitized solar cell, Lausanne: EPFL, 2004.
 
[11]  Y. C. Tung, Effect of morphologies and electronic properties of metal oxide nanostructure layer on dye-sensitized solar cells, Doctoral thesis, Pok Fu Lam: University of Hong Kong, 2010.
 
[12]  L. M. M. Andrade, Study and characterization of Gratzel solar cells, Praça de Gomes Teixeira, Portugal: University of Porto, 2010.
 
[13]  S. Wenger, Strategies to optimizing dye-sensitized solar cells: organic sensitizers, tandem device structures, and numerical device modeling, Doctaral thesis, Lausanne: La faculté sciences de base laboratoire de photonique et interfaces programme doctal en chimie et génie chimique, Ecole Polytechnique Fédérale de Lausanne, 2010.
 
[14]  M. A. Green, Solar cells: Operating principles, technology and system applications, N. Holonyak, Ed., Australia: University of South Wales, 1982.
 
[15]  D. Rosengrant, Solar power module, backgrounder: solar cells: sunlight to electricity, D. Rosengrant, Ed., Kennesaw: Kennesaw State University, 2010.
 
[16]  S. Honda, Dye modification of donor/acceptor interfaces in polymer solar cells, Doctoral thesis, Kyoto: Kyoto University, 2011.
 
[17]  K. M. Karlsson, Design, synthesis and properties of organic sensitizers for dye- sensitized solar cells, Doctoral thesis, Stockholm, SE Stockholm: Royal Institute of Technology, 2011.
 
[18]  u.-H. JYum, E. Baranoff, S. Wenger, M. K. Nazeeruddin and M. Gratzel, “Panchromatic engineering for dye-sensitized solar cells,” Energy &Environmental Science, vol. 4, p. 842, 2011.
 
[19]  P. Smestad and M. Gratzel, “Demonstrating electron transfer and nanotechnology: A natural dye sensitized nanocrystalline energy converter,” Journal of Chemical Education, vol. 75, p. 6, 1998.
 
[20]  J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazzeeruddin and M. Gratzel, “Sequential deposition as route to high performance perovskite-sensitized solar cells.” Nature, vol. 499, pp. 316-319, 2013.
 
[21]  K. H. a. H. Arakawa, Dye-sensitized solar cells, Tsukuba, Japan: National Institute of Advanced Industrial Science and Technology (AIST), 2003.
 
[22]  K. W. Tan, Commercialisation potential of dye-sensitized mesoscopic solar cells, Master’s thesis, Singapore: Nanyang Technological University, 2008.
 
[23]  K. Kalyanasundaram and M. Grätzel, “Applications of functionalized transition metal complexes in photonics and optoelectronic devices,” Coordination Chemistry reviews, vol. 77, pp. 347-414, 1998.
 
[24]  M. Gratzel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001a.
 
[25]  A. S. Karmakar and J. P. Ruparelia, “A critical review on dye sensitized solar cells,” in Internation Conference on Current Trends in Technology, Nuicone, 2011.
 
[26]  Z. X. Chemistry, Characterization of the dye-sensitized solar cell, Worcester, Massachusetts, United States: Worcester Polytechnic Institute, 2012.
 
[27]  J. C. Warner, A. S. Cannon and K. M. Dye, “Green chemistry,” Environmental Impact Assessment Review, vol. 24 , p. 775-799, 2004.
 
[28]  M. Rai, A. Gade and A. Yadav, “Biogenic nanoparticles: An introduction to what they are, how they are synthesized and their applications,” in Metal Nanoparticles in Microbiology, London New York, Springer-Verlag Berlin Heidelberg, 2011, pp. 12-26.
 
[29]  S. Baker and K. S. K. P. S. akshith, “Plants: Emerging as nanofactories towards facile route in synthesis of nanoparticles,” BioImpacts, vol. 3(3), pp. 111-117, 2013.
 
[30]  G. Rajakumarl, A. Rahuman, C. Jayaseelan, T. Santhoshkumar, S. Marimuthu, C. Kamaraj, A. Bagavan, A. A. Zahir, A. Vishnu Kirthi, G. Elango and P. R. K. Arora, “Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus,” Parasitol Res, vol. 113, pp. 469-479, 2014.
 
[31]  K. Velayutham, A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan, A. Kirthi, C. Kamaraj, A. Zahir and G. Elango, “Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis.,” Parasitol Res, vol. 111(6), pp. 2329-37, 2012.
 
[32]  R. B. Malabadi, R. K. Chalannavar, N. T.Meti, G. S. Mulgund, K. Nataraja and S. V. Kumar, “Synthesis of antimicrobial silver nanoparticles by callus cultures and in vitro derived plants of Catharanthus roseus,” Research in Pharmacy , vol. 2(6), pp. 18-31, 2012.
 
[33]  S. Marimuthu, A. A. Rahuman, C. Jayaseelan, V. A. Kirthi, T. Santhoshkumar, K. Velayutham, A. Bagavan, C. Kamaraj, G. Elango, M. Iyappan, C. Siva and Loganathan, “Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa,” Asian Pacific Journal of Tropical Medicine, vol. 2013, pp. 682-688, 2013.
 
[34]  A. C. Nwanya, P. Ugwuoke, P. M. Ejikeme and E. O. Oparaku, “Jathropha Curcas and Citrus Aurantium leavesdye extract for use in dye sensitized solar cell with TiO2 Films,” Int. J. Electrochem. Sci., vol. 7, pp. 11219 - 11235, 2012.
 
[35]  M. Shailajaraj and P. Roselin, “The antibacterial activity of ZNO nanoparticles against propianibacterium,” International Journal of Pharma and Bio Sciences, vol. 3(1), 2012.
 
[36]  K. H. Ibrahem and J. A. S. Salman, “Effect of titatium nanoparticles biosynthesis by Lactobacullus on urease, HEMOLYSIN& BIOFILM FORMING,” European Scientific J vol.10, No.9 I, vol. 10(9), 2014.
 
[37]  A. Kirthi, A. A. Rahuman, G. Rajakumar, S. Marimuthu, T. Santhoshkumar, C. Jayaseelan, G. Elango, A. A. Zahir, C. Kamaraj and A. Bagavan, “Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis,” Materials Letters, vol. 65, p. 2745-2747, 2011.
 
[38]  W. He, J. Cui, Y. Yue, X. Zhang, X. Xia, H. Liu and S. Lui, “High-performance TiO2 from baker’s yeast,” Journal of Colloid and Interface Science, vol. 354 , p. 109-115, 2011.
 
[39]  M. Sundrarajan and S. Gowri, “Green synthesis of titanium dioxide nanoparticles by nyctanthes arbor-tristis leaves extract,” Chalcogenide Letters, vol. 8 (8), pp. 447-451, 2011.
 
[40]  P. S. M. Kumar, A. P. Francis and T. Devasena, “Biosynthesized and chemically synthesized titania nanoparticles:Comparative analysis of antibacterial activity,” J. Environ. Nanotechnol., vol. 3 (3), pp. 73-81, 2014.
 
[41]  A. K. Jhaa, K. Prasadb and A. Kulkarnic, “Synthesis of TiO2 nanoparticles using microorganisms,” Colloids and Surfaces B: Biointerfaces , vol. 71, p. 226-229, 2009.
 
[42]  M. Kannan, K. Rajarathinam, B. Dheeba, K. Nageshwari and K. Kannan, “Biosynthesis and characterization of intracellular TiO2 nanoparticles by lactobacillus sp.: and its potential application in decolaurization of methyl orange dyes,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 7 (2), pp. 225-229, 2015.
 
[43]  N. Kaushik, M. Thakkar, S. Snehit, M. Mhatre, Y. Rasesh and M. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 6, p. 257-262, 2010.
 
[44]  R. Raliya, P. Biswas and J. Tarafdar, “TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.),” Biotechnology Reports, vol. 5, p. 22-26, 2015.
 
[45]  H. Mahmoodzadeh, M. Nabavi and H. Kashefi, “Effect of nanoscale titanium dioxide particles on the germination and growth of Canola (Brassica napus),” Journal of Ornamental and Horticultural Plants,, vol. 3 (1), pp. 25-32, 2013.