Journal of Mathematical Sciences and Applications. 2017, 5(1), 24-26
DOI: 10.12691/jmsa-5-1-4
Open AccessArticle
Ali Ahmad Ali Fora1,
1Department of Mathematics, Yarmok University, Irbid, Jordan
Pub. Date: July 14, 2017
Cite this paper:
Ali Ahmad Ali Fora. The Number of Fuzzy Clopen Sets in Fuzzy Topological Spaces. Journal of Mathematical Sciences and Applications. 2017; 5(1):24-26. doi: 10.12691/jmsa-5-1-4
Abstract
We show the number of fuzzy clopen sets in an arbitrary fuzzy topological space can be any natural number greater than 1 if it is finite. We give an upper bound for this number. We shall also prove that the number of all crisp fuzzy clopen sets in an arbitrary fuzzy topological space is a power of 2 if it is finite.Keywords:
clopen enumerating finite set fuzzy clopen
This work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/
References:
[1] | M. Benoumhani, The number of topologies on a finite set, J. of Integer Sequences 9(2006) Article 06.2.6, 1-9. |
|
[2] | C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968). 182-190. |
|
[3] | A. A. Fora, Algebraic Approach to the number of clopen sets in topological spaces, Bull. Cal. Math. Soc., 107, (2), (2015) 171-178. |
|
[4] | M.H. Ghanim, E.E. Kerre and A.S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J.Math. Anal. Appl. 102 (1984) 189-202. |
|
[5] | J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18 (1967) 145-174. |
|
[6] | M. Kolli, Direct and Elementary Approach to Enumerate Topologies on a Finite Set, J. of Integer Sequences 10(2007) Article 07.3.1, 1-11. |
|
[7] | H. Sharp, Jr., Cardinality of finite topologies, J. Combinatorial Theory 5(1968) 82-86. |
|
[8] | R. Srivastava, S.N.Lal and A.K. Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81(1981) 497-506. |
|
[9] | R.P. Stanley, On the number of open sets of finite topologies, J. Combinatorial Theory 10(1971) 74-79. |
|
[10] | C.K. Wong, Fuzzy points and local properties of fuzzy topology, J.Math. Anal. Appl. 46(1974) 316-328. |
|
[11] | L.A. Zadeh, Fuzzy sets, Inform. and Control 8(1965) 338-353. |
|