Journal of Mathematical Sciences and Applications
ISSN (Print): 2333-8784 ISSN (Online): 2333-8792 Website: http://www.sciepub.com/journal/jmsa Editor-in-chief: Prof. (Dr.) Vishwa Nath Maurya, Cenap ozel
Open Access
Journal Browser
Go
Journal of Mathematical Sciences and Applications. 2014, 2(3), 39-42
DOI: 10.12691/jmsa-2-3-3
Open AccessArticle

New Approach for Numerical Solution of Poisson’s Equation by Cubic Spline

M. Yousefi1, , J. Rashidinia1, M. Yousefi2, N.S BahrololoumiMofrad2 and Mehdi Moudi3

1School of Mathematics, Iran University of Science & Technology, Narmak, Tehran 16844-13114, Iran

2Energy and Mechanical Engineering Department, Abbaspour- power and water-College of Engineering, ShahidBeheshti University, P.O. Box.16765-1719, Tehran, Iran

3Institute of Applied Materials - Reliability of Components and Systems (IAM-ZBS) Engelbert-Arnold-Straße Karlsruhe, Germany

Pub. Date: December 31, 2014

Cite this paper:
M. Yousefi, J. Rashidinia, M. Yousefi, N.S BahrololoumiMofrad and Mehdi Moudi. New Approach for Numerical Solution of Poisson’s Equation by Cubic Spline. Journal of Mathematical Sciences and Applications. 2014; 2(3):39-42. doi: 10.12691/jmsa-2-3-3

Abstract

We consider the solution of various boundary value problems for Poisson’s equation in the unit square using a nodal cubic spline collocation method and modifications of it which produce optimal fourth order approximations. Uniform partition of the square with cost O(N2log N) using a direct fast Fourier transform method. The numerical results exhibit super convergence phenomena.

Keywords:
Nodal collocation Poisson’s equation cubic spline convergence analysis

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  B. Bialecki, G. Fairweather, and A. Karageorghis, Matrix decomposition algorithms for modified spline collocation for Helmholtz problems, SIAM J. Sci. Comput., 24 (2003), pp. 1733-1753.
 
[2]  B. Bialecki, G. Fairweather, and A. Karageorghis, Optimal superconvergent one step nodal cubic spline collocation methods, SIAM J. Sci. Comput., 27 (2005), pp. 575-598.
 
[3]  E. N. Houstis, E. A. Vavalis, and J. R. Rice, Convergence of O(h4) cubic spline collocation methods for elliptic partial differential equations, SIAM J. Numer. Anal., 25 (1988), pp. 54-74.
 
[4]  C. de Boor, The Method of Projections as Applied to the Numerical Solution of Two Point Boundary Value Problems Using Cubic Splines, Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1966.
 
[5]  D. Archer, An O(h4) cubic spline collocation method for quasilinear parabolic equations, SIAM J. Number. Anal., 14 (1977), pp. 620-637.
 
[6]  J. W. Daniel and B. K. Swartz, Extrapolated collocation for two-point boundary-value problems using cubic splines, J. Inst. Math Appl., 16 (1975), pp. 161-174.
 
[7]  E. N. Houstis, E. A. Vavalis, and J. R. Rice, Convergence of O(h4) cubic spline collocation methods for elliptic partial differential equations, SIAM J. Numer. Anal., 25 (1988), pp. 54-74.
 
[8]  B. Bialecki and G. Fairweather, Matrix decomposition methods for separable elliptic boundary value problems in two dimensions, J.Comput. Appl. Math., 46 (1993), pp. 369-386.