Frontiers of Astronomy, Astrophysics and Cosmology
ISSN (Print): ISSN Pending ISSN (Online): ISSN Pending Website: Editor-in-chief: Prof. Luigi Maxmilian Caligiuri
Open Access
Journal Browser
Frontiers of Astronomy, Astrophysics and Cosmology. 2015, 1(1), 1-15
DOI: 10.12691/faac-1-1-1
Open AccessArticle

On the Evolving Black Holes and Black Hole Cosmology- Scale Independent Quantum Gravity Approach

U. V. S. Seshavatharam1, and S. Lakshminarayana2

1Honorary faculty, I-SERVE, Alakapuri, Hyderabad-35, AP, India

2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India

Pub. Date: December 04, 2014

Cite this paper:
U. V. S. Seshavatharam and S. Lakshminarayana. On the Evolving Black Holes and Black Hole Cosmology- Scale Independent Quantum Gravity Approach. Frontiers of Astronomy, Astrophysics and Cosmology. 2015; 1(1):1-15. doi: 10.12691/faac-1-1-1


So far many models have been proposed for understanding the real picture of ‘quantum gravity’. But none is successful in interpreting the observed cosmological phenomena. By going through this revised paper as a review article, many concepts on evolving black holes, black hole radiation, black hole cosmology, scale independent cosmological quantum gravity, CMBR isotropy and anisotropy, ordered galactic structures, galactic rotation curves, observed galactic redshifts, present and future cosmic rate of expansion etc. can be understood. The three heuristic concepts are: 1) Evolving universe is a scale independent quantum gravitational object. 2) CMBR temperature is a quantum gravitational effect of the (evolving and light speed rotating) primordial black hole universe and 3) Observed cosmic redshift is the result of a characteristic light emission mechanism of the cosmologically evolving hydrogen atom and is inversely proportional to the cosmic temperature.

standard cosmology stoney mass black hole cosmology cosmic growth index cosmic red shift galaxy rotation curves cosmic age CMB isotropy and anisotropy final unification

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  B.J.Carr. Primordial Black Holes as a Probe of Cosmology and High Energy Physics Lect. Notes Phys. 631, 301-321 (2003).
[2]  Hubble E. P, A relation between distance and radial velocity among extra-galactic nebulae, PNAS, 1929, vol. 15, 1929, pp. 168-173.
[3]  Hubble, E.P, The 200-inch telescope and some problems it may solve. PASP, 59, pp 153-167, (1947).
[4]  Perlmutter, S. et al. Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35. Astrophysical Journal 483 (2): 565, (1997).
[5]  W. L. Freedman et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. The Astrophysical Journal, 553 (1): 47-72. (2001).
[6]  J. A. Frieman et al. Dark energy and the accelerating universe. Ann. Rev. Astron. Astrophys .46, p 385. (2008).
[7]  The Accelerating Universe. The Royal Swedish Academy of sciences. 2011 Nobel prize in physics.
[8]  Steinhardt, Paul J. The inflation debate: Is the theory at heart of modern cosmology deeply flawed? Scientific American, April; pp. 18-25 (2011.)
[9]  David N. Spergel et al. Planck Data Reconsidered.
[10]  Seshavatharam, U.V.S. and Lakshiminarayana, S. (2014) Cosmic Redshift, Temperature, Growth Rate and Age in Stoney Scale Black Hole Cosmology. Open Access Library Journal, 1: e613.
[11]  U. V. S. Seshavatharam, S. Lakshminarayana. Basics of black hole cosmology-first critical scientific review. Physical Science International journal, Vol. 4, Issue-6, p. 842-879. (2014).
[12]  U. V. S. Seshavatharam and S. Lakshminarayana. Basics of the decelerating black hole universe. International Journal of Advanced Astronomy, 2 (1) 8-22, (2014).
[13]  Seshavatharam, U. V. S, Lakshminarayana, S. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics. Journal of Nuclear Physics, Material Sciences, Radiation and Applications Vol. 1, No. 1, August 2013 pp. 45-60.
[14]  U. V. S. Seshavatharam. Physics of rotating and expanding black hole universe. Progress in Physics. April, p 7-14, (2010).
[15]  U.V.S. Seshavatharam. The Primordial Cosmic Black Hole and the Cosmic Axis of Evil. International Journal of Astronomy, 1 (2): 20-37, (2012).
[16]  Ashtekar, Abhay New variables for classical and quantum gravity. Physical Review Letters 57 (18): 2244-2247 (1986).
[17]  Carlo Rovelli. A new look at loop quantum gravity. Class. Quant. Grav. 28: 114005, (2011).
[18]  Hawking, Stephen W. Quantum cosmology. In Hawking, Stephen W.; Israel, Werner. 300 Years of Gravitation. Cambridge University Press. pp. 631-651 (1987).
[19]  Schwarz, John H. String Theory: Progress and Problems. Progress of Theoretical Physics Supplement 170: 214-226 (2007).
[20]  Maïté Dupuis, James P. Ryan and Simone Speziale. Discrete Gravity Models and Loop Quantum Gravity: a Short Review. SIGMA 8 (2012), 052, 31 pages.
[21]  S. Chandrasekhar. On stars, their evolution and their stability. Nobel lecture (1983).
[22]  Hawking S.W. Particle creation by black holes. Commun. Math. Phys., 1975, v. 43, 199-220.
[23]  Hawking S.W. A Brief History of Time. Bantam Dell Publishing Group. 1988.
[24]  G..J. Stoney, On the Physical Units of Nature. Phil. Mag. 11 (1881) 381-91.
[25]  K. Tomilin, Natural System of Units, Proc. of the XX11 International Workshop on High Energy Physics and Field theory, 289 (2000).
[26]  G. Gorelik, Hermann Weyl and Large Numbers in Relativistic Cosmology, Einstein Studies in Russia, (ed. Y. Balashov and V. Vizgin), Birkhaeuser. (2002).
[27]  Ross McPherson. Stoney Scale and Large Number Coincidences. Apeiron, Vol. 14, No. 3, (2007).
[28]  P.J. Mohr, B.N. Taylor, and D.B. Newell in arXiv: 1203. 5425 and Rev. Mod. Phys. (to be published).
[29]  Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G.. Phys. Rev. Lett. 112.068103. (2013)
[30]  J. B. Fixler; G. T. Foster; J. M. McGuirk; M. A. Kasevich. Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315 (5808): 74-77, (2007).
[31]  Hawking SW. Information Preservation and Weather Forecasting for Black holes. (2014).
[32]  Abhas Mitra and K. K. Singh, The mass of the Openheimer-Snyder black hole: only finite mass of quasy black holes Int. J. Mod. Phys. D 22, 1350054 (2013).
[33]  Christopher S. Reynolds. Astrophysics: Black holes in a spin. Nature. 494, 432-433 (28 February 2013).
[34]  U. V. S. Seshavatharam. Light speed rotating black holes: The special holes International Journal of Advanced Astronomy, 1 (1) (2013) 13-20.
[35]  Planck, M. Zur Theorie des Gesetzes der Energieverteilungim Normalspektrum". Verhandlungen der Deutschen Physikalischen Gesellschaft 2: 237 (1900).
[36]  Lianxi Ma et al. Two forms of Wien’s displacement law. Lat. Am. J. Phys. Educ. Vol. 3, No. 3, Sept. 2009.
[37]  Einstein, A. Kosmologischen Betrachtungenzurallgemeinen Relativitätstheorie Sitzungsb. König. Preuss. Akad. 142-152, (1917).
[38]  Friedman, A. Über die Möglichkeiteiner Welt mitconstanter negative Krümmung des Raumes. Zeit. Physik. 21: 326-332. (1924).
[39]  F.Hoyle, A new model for the expanding universe. Mon. Not.Roy.Astron. Soc. 108, 372.
[40]  R.A. Alpher, H.A. Bethe, and G. Gamow. The origin of chemical elements. Phys. rev.73, 80, 1948.
[41]  Penzias. The origin of elements. Nobel lecture. 1978.
[42]  Milgrom, M.. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal 270: 365-370. (1983).
[43]  J. R. Brownstein and J. W. Moffat. Galaxy Rotation Curves without Non-Baryonic Dark Matter. Astrophys. J. 636: 721-741 (2006).
[44]  Edmund A. Chadwick et al. A gravitational theoretical development supporting MOND. Phys. Rev. D88, 2, 024036, (2013).
[45]  Jacob D. Bekenstein. The modified Newtonian dynamics-MOND-and its implications for new physics. Contemporary Physics 47 (6): 387, (2006).
[46]  G. Gentile, B. Famaey, W. J. G. de Blok. THINGS about MOND. Astron. Astrophys. 527: A76, (2011).
[47]  Robert H. Sanders and Stacy S. McGaugh. Modified newtonian dynamics as an alternative to dark matter. Annu. Rev. Astron. Astrophys. 40:263-317 (2002).
[48]  J. V. Narlikar. Introduction to cosmology. Cambridge Univ Press, 2002.
[49]  Gaurab Ganguly et al. SeD Radical: A probe for measurement of time variation of Fine Structure Constant (α) and Proton to Electron Mass Ratio (µ).
[50]  J.K. Webb et al. Indications of a spatial variation of the fine structure constant. Physical Review letters, 107 (19) 2011.
[51]  Srianand R. et al., Time Variation of the Fine Structure Constant. The Messenger. No. 116, 25-28 (2004).
[52]  P. A. M. Dirac. The cosmological constants. Nature, 139, 1937, p 323.
[53]  P. A. M. Dirac. A new basis for cosmology. Proc. Roy. Soc. A 165, 1938, p 199.
[54]  Brandon Carter. Large number coincidences and the anthropic principle in cosmology. General Relativity and Gravitation. Volume 43, Issue 11, pp 3225-3233, (2011).
[55]  Ross A. McPherson. The Numbers Universe: An Outline of the Dirac/Eddington Numbers as Scaling Factors for Fractal, Black Hole Universes. EJTP 5, No. 18 (2008) 81-94.
[56]  Scott Funkhouser. A new large-number coincidence and a scaling law for the cosmological constant. Proc. R. Soc. A 8 May 2008 vol. 464 no. 20931345-1353.
[57]  Barrow, J.D. The Constants of Nature from Alpha to Omega-The Numbers that Encode the Deepest Secrets of the Universe. Pantheon Books, 2002;
[58]  Gamov G. Numerology for the constants of nature. Proceedings of the National Academy of Science U.S.A., 1968, v. 59 (2), 313-318;
[59]  Saibal Ray, Utpal Mukhopadhyay and Partha Pratim Ghosh. Large Number Hypothesis: A Review.
[60]  Abdus Salam. Einstein’s Last Dream: The Space-Time Unification of Fundamental Forces, Physics News, 12 (2): 36, June 1981.
[61]  David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. 2005, p 12.
[62]  Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP-02-94. Posted in the arXives as the e-print physics/0505149, and references therein.
[63]  Salam A. and Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., 1993, v. A8 (4), 321-326.
[64]  Abdus Salam. Strong Interactions, Gravitation and Cosmology. Publ. in: NATO Advanced Study Institute, Erice, June16-July 6, 1972; in: High Energy Astrophysics and its Relation to Elementary Particle Physics, 441-452 MIT Press, Cambridge (1974).
[65]  Pathria, R. K. The Universe as a Black Hole. Nature 240 (5379): 298-299.
[66]  Good, I. J. Chinese universes. Physics Today 25 (7): 15. July.
[67]  Joel Smoller and Blake Temple. Shock-wave cosmology inside a black hole. Proc Natl Acad Sci U S A. September 30; 100 (20): 1121611218. (2003).
[68]  Chul-Moon Yoo et al. Black Hole Universe. Time evolution. Phys. Rev. Lett. 111, 161102 (2013).
[69]  Michael E. McCulloch. A Toy Cosmology Using a Hubble-Scale Casimir Effect. Galaxies 2014, 2, 81-88.
[70]  T.X. Zhang and C. Frederic. Acceleration of black hole universe. Astrophysics and Space Science, Volume 349, Issue 1, pp 567-573. (2013).
[71]  Zhang, Tianxi. Cosmic microwave background radiation of black hole universe. Astrophysics and Space Science, Volume 330, Issue 1, pp 157-165. (2010).
[72]  Zhang, Tianxi. Quasar Formation and Energy Emission in Black hole universe Progress in Physics, 3: 48-53, (2012).
[73]  Poplawski, N. J. Radial motion into an Einstein-Rosen bridge. Physics Letters B 687 (23): 110-113. (2010).
[74]  Poplawski, N. J. Big bounce from spin and torsion. General Relativity and Gravitation Vol. 44, No. 4 (2012) pp. 1007-1014.
[75]  Poplawski, N. J. Energy and momentum of the Universe. Class. Quantum Grav. 31, 065005 (2014).
[76]  Pourhasan R, Afshordi N and Mann R.B. Did a hyper black hole spawn the universe? Nature-International weekly journal of science. 13 September 2013, arXiv: 1309. 1487v2.
[77]  Michael J. Longo, Detection of a Dipole in the Handedness of Spiral Galaxies with Redshifts z 0.04, Phys. Lett. B 699, 224-229 2011.
[78]  S.-C. Su and M.-C. Chu. Is the universe rotating? Astrophysical Journal, 703 354. 2009.
[79]  J. D. McEwen et al. Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP. Mon. Not. R. Astron. Soc. 000, 1-15 (2013). arXiv: 1303. 3409v1.
[80]  L. M. Chechin. On the Modern Status of the Universe Rotation Problem. Journal of Modern Physics, 2013, 4, 126-132.
[81]  C Sivaram and Kenath Arun, Primordial Rotation of the Universe, Hydrodynamics, Vortices and Angular Momenta of Celestial Objects. The Open Astronomy Journal, 2012, 5, 7-11.
[82]  Sidharth, B.G. Is the Universe Rotating? Prespacetime Journal. October 2010, Vol. 1, Issue 7, pp. 1168-1173.
[83]  Marcelo Samuel Berman, Fernando de Mello Gomide. Local and Global Stability of the Universe. Journal of Modern Physics, 2013, 4, 7-9.
[84]  Robert V Gentry. New Cosmic Center Universe Model Matches Eight of Big Bang’s Major Predictions without the F-L Paradigm. CERN preprint, EXT-2003-022, 14 Apr 2003.
[85]  G. Chapline et al. Tommy Gold Revisited: Why Does Not The Universe Rotate? AIP Conf. Proc. 822: 160-165, 2006.
[86]  Dmitri Rabounski. On the Speed of Rotation of Isotropic Space: Insight into the Redshift Problem. The Abraham Zelmanov Journal, Vol. 2, 2009, 208-223.
[87]  Kurt Godel. Rotating Universes in General Relativity Theory. Proceedings of the international Congress of Mathematicians in Cambridge, 1: 175-81, 1950.
[88]  S.W. Hawking. On the rotation of the universe. Mon. Not. Royal. Astr. Soc. 142, 129-141. 1969.
[89]  M. Novello and M. J. Reboucas. Rotating universe with successive causal and noncausal regions. Phys. Rev. D 19, 2850-2852 (1979).
[90]  Barrow J D, Juszkiewicz R, Sonoda DH. Universal rotation-How large can it be? Mon. Not. R. Astron. Soc. 1985; 213: 917.