[1] | Pop, E; Varshney, V; Roy, A K; Thermal properties of graphene: Fundamentals and application. MRS Bulletin. 2012, 37, 1273-1281. |
|
[2] | Khan, A I; Navid, I A, Noshin, M; Uddin, H M A; Hossain, F F; Subrina, Samia; Equilibrium molecular dynamics (MD) simulation study of thermal conductivity of graphene nanoribbon: A comparative study on MD potentials. Electronics 2015, 4, 1109-1124. |
|
[3] | Seol, J.H.; Jo, I.; Moore, A.L.; Lindsay, L.; Aitken, Z.H.; Pettes, M.T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Two-Dimensional Phonon Transport in Supported Graphene. Science 2010, 328, 213-216. |
|
[4] | Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902-907. |
|
[5] | Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S.I.; Seal, S. Graphene based materials: Past,b present and future. Prog. Mater. Sci. 2011, 6, 1178-1271. |
|
[6] | Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 1999, 59, 2514-2516. |
|
[7] | Cao, A. Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. App. Phys. Lett. 2012, 111, 083528. |
|
[8] | Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nano electronic circuits. App. Phys. Lett. 2008, 92, 151911. |
|
[9] | Hu, J.; Ruan, X.; Chen, Y.P. Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: A Molecular Dynamics Study. Nano Lett. 2009, 9, 2730-2735. |
|
[10] | Chen, L.; Kumar, S. Thermal transport in graphene supported on copper. J. Appl. Phys. 2012, 112, 043502 |
|
[11] | Zhang, Y.; Cheng, Y.; Pei, Q.; Wang, C.; Xiang, Y. Thermal conductivity of defective graphene. Phys. Lett. A 2012, 376, 3668-3672. |
|
[12] | Yang, D.; Ma, F.; Sun, Y.; Hu, T.; Xu, K. Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation. App. Surf. Sci. 2012, 258, 9926-9931. |
|
[13] | Yu, C.; Zhang, G. Impacts of length and geometry deformation on thermal conductivity of graphene nanoribbons. J. App. Phys. 2013, 113. |
|
[14] | ZHITING TIAN B.E., Tsinghua University, China, 2007; Nanoscale Heat Transfer In ARGON-Like Solids Via Molecular Dynamics Simulations. |
|
[15] | Jie Chen, Gang Zhangand Baowen Li, "Remarkable reduction of thermal conductivity in silicon nano tubes". |
|
[16] | Lukes, J R; Zhong H; Thermal conductivity of individual single wall carbon nanotubes. J. Heat Transfer, 2007, 129, 705-712. |
|
[17] | Pereira, L.F.C.; Donadio, D. Divergence of the thermal conductivity in uniaxially strained graphene. Phys. Rev. B 2013, 87, 125424. |
|
[18] | Malekpour H.,Chang K. H., Chen J.C., Lu C.Y., Nika D.L., Novoselov K.S., Balandin A.A. The Thermal conductivity of graphene laminate. Nano Lett., 2014, 14 (9), pp 5155-5161. |
|