American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2017, 5(2), 43-50
DOI: 10.12691/ajn-5-2-1
Open AccessArticle

Solution-phase Synthesis of Zn-doped GaN Photocatalysts: Morphology, Composition, and Catalytic Activity towards Methylene Blue Degradation and 4-nitroaniline Conversion

Keerthi Senevirathne1, , Sanuja Pitigala1, Shyamalee Ramaraj1, Abdou Lachgar2, 3 and Richard T. Williams2, 4

1Department of Chemistry, Florida A&M University, Tallahassee, FL, USA

2Center for Energy, Environment, and Sustainability, Wake Forest University, Winston Salem, NC, USA

3Department of Chemistry, Wake Forest University, Winston Salem, NC, USA

4Department of Physics, Wake Forest University, Winston Salem, NC, USA

Pub. Date: August 03, 2017

Cite this paper:
Keerthi Senevirathne, Sanuja Pitigala, Shyamalee Ramaraj, Abdou Lachgar and Richard T. Williams. Solution-phase Synthesis of Zn-doped GaN Photocatalysts: Morphology, Composition, and Catalytic Activity towards Methylene Blue Degradation and 4-nitroaniline Conversion. American Journal of Nanomaterials. 2017; 5(2):43-50. doi: 10.12691/ajn-5-2-1

Abstract

Solution based synthesis methods; refluxing, base hydrolysis, and hydrothermal synthesis were successfully applied to synthesize shape anisotropic Zn doped Ga2O3, followed by subsequent nitridation in ammonia to make corresponding nitride photocatalysts. The catalysts were characterized using different physical characterization methods to evaluate their structure, shape and composition. Photocatalytic methylene blue (MB) degradation and selective hydrogenation of aromatic nitro organic compound 4-nitroaniline (4-NA) were selected to probe reactions under uv-visible and visible light irradiation. Zn containing nitride catalysts are clearly active on MB degradation and 4-NA conversion under visible light irradiation.

Keywords:
photocatalysis Zinc-doped GaN solution-phase synthesis shape anisotropy organic molecule decomposition and conversion

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Figures

Figure of 7

References:

[1]  Maeda, K. and Domen, K. “New non-oxide photocatalysts designed for overall water splitting under visible light”. J. Phys. Chem. C 111. 7851-7861. 2007.
 
[2]  Wu, W., Liu, G., Liang, S., Chen, Y., Shen, L., Zheng, H., Yuan, R., Hou, Y. and Wu, L. “Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline PbBi2Nb2O9”. J. Catal. 290. 13-17. 2012.
 
[3]  Liu, S., Chen, Z., Zhang, N., Tang, Z.-R. and Xu, Y.-J. “An efficient self-assembly of CdS nanowires-reduced graphene oxide nanocomposites for selective reduction of nitro organics under visible light irradiation”. J. Phys. Chem. C 117. 8251-8261. 2013.
 
[4]  Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. “A review and recent developments in photocatallytic water splitting using TiO2 for hydrogen production”. Renew. Sustain. Energy Rev. 47. 401-425. 2007.
 
[5]  Jung, H.S., Hong, Y.J., Li, Y., Cho, J., Kim, Y.-J. and Yi, G.-C. “Photocatalysis using GaN nanowires”. ACS Nano 2. 637-642. 2008.
 
[6]  Wu, A., Li, J., Liu, B., Yang, W., Jiang, Y., Liu, L., Zhang, X., Xiong, C. and Jiang, X. “Band-gap tailoring and visible-light driven photocatalytic performance of porous (GaN)1-x(ZnO)x solid solution”. Dalton Trans. 46. 2643-2652. 2017.
 
[7]  Maeda, K., Sakamoto, N., Ikeda, T., Ohtsuka, H., Xiong, A., Lu, D., Kanehara, M., Teranishi, T. and Domen, K. “Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.” Chem. Eur. J. 16. 7750-7759. 2010.
 
[8]  Maeda, K., Takata, T., Hara, M., Saito, N., Inoue, Y., Kobayashi, H. and Domen, K. “GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting.” J. Am. Chem. Soc. 127. 8286-8287. 2005.
 
[9]  Wang, D., Pierre, A., Kibria, M.G., Cui, K., Han, X., Bevan, K.H., Guo, H., Paradis, S., Hakima, A.-R. and Mi, Z. “Wafer level photocatalytic water splitting on GaN nanowire arrays grown by molecular beam epitaxy”. Nano Lett. 11. 2353-2357. 2011.
 
[10]  Kasahara, A., Nukumizu, K., Hitoki, G., Takata, T., Kondo, J., Hara, M., Kobayashi, H. and Domen, K. “Photoreactions on LaTiO2N under visible light irradiation”. J. Phys. Chem. A 106. 6750-6753. 2002.
 
[11]  Ito, S., Thampi, K.R., Comte, P., Liska, P. and Gratzel, M. “Highly active meso-microporous TaON photocatalyst driven by visible light”. Chem. Commun. 0. 268-270. 2005.
 
[12]  Hitoki, G., Ishikawa, A., Takata, T., Kondo, J.N., Hara, M. and Domen, K. “Ta3N5 as a novel visible light driven photocatalyst”. Chem. Lett. 31. 736-737. 2002.
 
[13]  Ho, C.-T., Low, K.-B., Klie, R.F., Maeda, K., Domen, K., Meyer, R.J. and Snee, P.T. “Formation of sol-gel derived TaOxNy photocatalysts”. J. Phys. Chem. C 115. 647-652. 2011.
 
[14]  Ho, C.-T., Low, K.-B., Jash, P., Shen, H., Snee, P.T. and Meyer, R.J. “Synthesis and characterization of semiconductor tantalum nitride nanoparticles”. Chem. Mater. 23. 4721-4725. 2011.
 
[15]  Burda, C., Lou, Y.B., Chen, X.B., Samia, A.C.S., Stout, J. and Gole, J.L. “Enhanced nitrogen doping in TiO2 nanoparticles”. Nano Lett 3. 1049-1051. 2003.
 
[16]  Huang, J., Cui, Y. and Wang, X. “Visible light-sensitive ZnGe oxynitride catalysts for the decomposition of organic pollutants in water”. Environ. Sci. Technol. 44. 3500-3504. 2010.
 
[17]  Gole, J.L., Stout, J.D., Burda, C., Lou, Y.B. and Chen, X.B. “Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale”. J. Phys. Chem. B 108. 1230-1240. 2004.
 
[18]  Yoshida, M., Hirai, T., Maeda, K., Saito, N., Kubota, J., Kobayashi, H., Inoue, Y. and Domen, K. “Photoluminescence spectroscopic and computational investigation of the origin of the visible light response of (Ga1-xZnx)(N1-xOx) photocatalyst for overall water splitting”. J. Phys. Chem. C 114. 15510-15515. 2010.
 
[19]  Maeda, K., Teramura, K., Takata, T., Hara, M., Saito, N., Toda, K., Inoue, Y., Kobayashi, H. and Domen, K. “Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst:  Relationship between physical properties and photocatalytic activity”. J. Phys. Chem. B 109. 20504-20510. 2005.
 
[20]  Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K. “Photocatalyst releasing hydrogen from water”. Nature 440. 295-295. 2006.
 
[21]  Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y. and Domen, K. “Characterization of Rh−Cr mixed-oxide nanoparticles dispersed on (Ga1-xZnx)(N1-xOx) as a cocatalyst for visible-light-driven overall water splitting”. J. Phys. Chem. B 110. 13753-13758. 2006.
 
[22]  Ikeda, S., Fubuki, M., Takahara, Y.K. and Matsumura, M. “Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting”. Appl. Catal. 300. 186-190. 2006.
 
[23]  Sato, J., Saito, N., Nishiyma, H. and Inoue, Y. “New photocatalyst group for water decomposition of RuO2-loaded p-block Metal (In, Sn, and Sb) oxides with d10 configuration”. J. Phys. Chem. B 105. 6061-6063. 2001.
 
[24]  Ai, Z., Yang, P. and Lu, X. “Degradation of 4-chlorophenol by a microwave assisted photocatalysis method”. J. Hazard. Mater. B 124. 147-152. 2005.
 
[25]  Huang, J.H., Wang, X.C., Hou, Y.D., Chen, X.F., Wu, L. and Fu, X.Z. “Degradation of benzene over a zinc germanate photocatalyst under ambient conditions”. Environ. Sci. Technol. 42. 7387-7391. 2008.
 
[26]  Huang, J.H., Ding, K.N., Hou, Y.D., Wang, X.C. and Fu, X.Z. “Nanostructuring cadmium germanate catalysts for photocatalytic oxidation of benzene at ambient conditions”. Langmuir 25. 8313-8319. 2009.
 
[27]  Tariq, M.A., Faisal, M., Muneer, M. and Bahnemann, D. “Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide”. J. Mol. Catal. A: Chem. 265. 231-236. 2007.
 
[28]  Wu, W., Lin, R., Shen, L., Liang, R., Yuan, R. and Wu, L. “Visible-light-induced photocatalytic hydrogenation of 4-nitroaniline over In2S3 photocatalyst in water”. Catal. Commun. 40. 1-4. 2013.
 
[29]  Bourett-Courchesne, E.D., Derenzo, S.E. and Weber, M.J. “Development of ZnO:Ga as an ultra-fast scintillator”. J. Nucl. Instr. Meth. A 601. 358-363. 2009.
 
[30]  Kim, Y., Atherton, S., Brigham, E.S. and Mallouk, T.E. “Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors”. J. Phys. Chem. A 97. 11802-11810. 1993.
 
[31]  Kang, X. and Chen, S. “Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: Effects of TiO2 crystalline phase”. J. Mater. Sci. 45. 2696-2702. 2010.