[1] | Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 177(1-3), 70-80. |
|
[2] | Noroozi, B., & Sorial, G. (2013). Applicable models for multi-component adsorption of dyes: a review. J. Environ. Sci., 25(12), 419-429. |
|
[3] | Solís, M., Solís, A., Pérez, H., Manjarrez, N., & Flores, M. (2012). Microbial decoulorization of azo dyes: a review. Process. Biochem., 47(12), 1723-1748. |
|
[4] | Huang, W., Zhang, Z., Han, X., Tang, J., Wang, J., Dong, S., & Wang, E. (2003). Liposome-mediated conformation transition of DNA detected by molecular probe: methyl green. Biolectrochemistry, 59(1), 21-27. |
|
[5] | Li, Q. L., Wang, Y., Sun, Z., Guo, F., & Zhu, J. (2014). Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue; A hyperspectral microscopic imaging analyses. Optics & Laser Technology, 64, 337-342. |
|
[6] | Rytwo, G., Tropp, D., & Serban, C. (2002). Adsorption of diquat, paraquat and methyl green on sepiolite. Applied Clay Science, 20(6), 273-282. |
|
[7] | Vijayalaskshmidevi, S., & Muthukumar, K. (2015). Improved biodegradation of textile dye effluent by coculture. Ecotoxicology and Environmental Safety, 114, 23-30. |
|
[8] | Rai, H. S., & Singh, J. E. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit. Rev. Environ.Sci. Technol., 35 (3), 219-238. |
|
[9] | Almeida, E. J., & Corso, C. R. (2014). Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112, 317-322. |
|
[10] | Niebischa, C. H., Alexandre Knoll Malinowski, A. K., Schadeck, R., & Mitchell, D. A. (2010). Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. Journal of Hazardous Materials, 180(1-3), 316-322. |
|
[11] | Bautista, P., Mohedano A.F., Menéndez, Casas J.A. & Rodriguez, J.J. (2010). Catalytic wet peroxide oxidation of cosmetics wastewaters with Fe-bearing catalyst. Catalysis Today, 151(1-2), 148-152. |
|
[12] | Vilar, V. J., Pinho, L. X., Pintor, A. M., & Boaventura, R. A. (2011). Treatment of textile wastewaters by solar-driven advanced oxidation processes. Solar Energy, 85(9), 1927-1934. |
|
[13] | Bautista, P., Mohedano, A. F., Gilarranz, M. A., Casas, J. A., & Rodríguez, J. J. (2007). Application of Fenton oxidation to cosmetics wastewaters treatment. Journal of Hazardous Materials, 143(1-2), 128-134. |
|
[14] | Saygili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93. |
|
[15] | Bansal, R., & Goyal, M. (2005). Activated carbon adsorption. Boca Raton: Taylor & Francis. |
|
[16] | Bandosz, T. J. (2006). Activated Carbon Surfaces in Environmental Remediation. New York: Elsevier. |
|
[17] | Aboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. Journal of Environmental Management, 156, 10-14. |
|
[18] | Panic, V. V., & Velickovic, S. J. (2014). Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Separation and Purification Technology, 122, 384-394. |
|
[19] | Alver, E., & Metin, Ü. A. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 200-202, 59-67. |
|
[20] | Wang, C., Li, J., Lianjun, W., Sun, X., & Huang, J. (2009). Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chinese Journal of Chemical Engineering, 17(3), 513-521. |
|
[21] | Jin, X., Yu, B., Chen, Z., Arocena, J. M., & Thring, R. W. (2014). Adsorption of Orange II dye in aqueous solution onto surfactant-coated zeolite: Characterization, kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 435, 15-20. |
|
[22] | Yahyaei, B., & Azizian, S. (2014). Rapid adsorption of binary dye pollutants onto the nanostructred mesoporous alumina. Journal of Molecular Liquids, 199, 88-95. |
|
[23] | Zolgharnein, J., Bagtash, M., & Shariatmanesh, T. (2015). Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 1016-1028. |
|
[24] | Javadian, H., Angaji, M. T., & M, N. (2014). Synthesis and characterization of polyaniline/γ-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes. Journal of Industrial and Engineering Chemistry, 20(5), 3890-3900. |
|
[25] | Liu, G., & Yang, R. L. (2010). Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of Non-Crystalline Solids, 356(4-5), 250-257. |
|
[26] | Krysztafkiewicz, A., Binkowski, S., & Jesionowski, T. (2002). Adsorption of dyes on a silica surface. Applied Surface Science, 199(1-4), 31-39. |
|
[27] | Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R., & Darragi, F. (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403, 69-78. |
|
[28] | Miyamoto, N., Kawai, R., Kuroda, K., & Ogawa, M. (2000). Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Applied Clay Science, 16, 161-170. |
|
[29] | Lagaly, G., Ogawa, M., & Dékány, I. (2013). Chapter 10.3 - Clay Mineral-Organic Interactions. Developments in Clay Science, 5, 215-225. |
|
[30] | El Mouzdahir, Y., Elmchaouri, A., Mahboub, R., Gil, A., & Korili, S.A. (2010). Equilibrium modeling for the adsorption of methylene blue from aqueous solutions on activated clay minerals. Desalination, 250(1), 335-338. |
|
[31] | Yuan, G., Theng, B., Churchman, G., & Gates, W. (2013). Clays and Clay Minerals for Pollution Control. Developments in Clay Science (pp 587-644). Amsterdam: Elsevier. |
|
[32] | Hendricks, S. A. & Jefferson, M. E. (1938). Structure of kaolin and talc-pirophilite hydrates and their bearing on water sorption of clays. American Mineralogist, 23(12) 863-875. |
|
[33] | Joussein, E., Petit, S., Churchman, J., Theng, B., Rughi, D., & Delvaux. (2005). Halloysite clay minerals: a review. Clay Minerals, 40, 383-426. |
|
[34] | Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44(5), 1489-1497. |
|
[35] | Zhao, M., & Peng, L. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Adsorption Microporous and Mesoporous Materials, 112(1-3), 419-424. |
|
[36] | Kiani, G., Dostali, M., Rostami, A., & Khataee, A. R. (2011). Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Applied Clay Science, 54(1), 34-39. |
|
[37] | Zhao, Z., Abdullayev, E., Vasiliev, A., & Lvov, Y. (2013). Halloysite nanotubule clay for efficient water purification. Journal of Colloid and Interface Science, 406, 121-129. |
|
[38] | Margulies, L., & Rozen, H. (1986). Adsorption of methyl green on montmorillonite. Journal of Molecular Structure, 141, 219-226. |
|
[39] | Rytwo, G., Nir, S., Crespin, M., & Margulies, L. (2000). Adsorption and Interactions of Methyl with Montmorillonite ans Sepiolite. Journal of Colloid and Interface Science, 222(1)12-19. |
|
[40] | dos Reis, L. G., Robaina, N. F., Pacheco, W. F., & Cassella, R. J. (2011). Separation of malachite green and methyl green cationic dyes from aqueous medium by adsorption on Amberlite XAD-2 and XAD-4 resins using sodium dodecyl sulfate as carrier. Chemical Engineering Journal, 171 (2) 532-540. |
|
[41] | Farghali, A. A., Bahgat, M., El Rouby, W. M. A., & Khedr, M. H. (2013). Preparation, decoration and characterization of graphene sheets for methyl green adsorption. Journal of Alloys and Compounds, 555, 193-200. |
|
[42] | Sharmaa, P., Saikiab, B. K., & Dasa, M. R. (2014). Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherms and thermodynamic parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 125-123. |
|
[43] | Brindley G.W. (1980) Order-disorder in the clay mineral structures. p. 125-196 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London. |
|
[44] | Nicolini, K., Fukamachi, C., Wypych, F., & Mangrich, A. (2009). Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. Journal Colloid Interface Science, 338(2), 474-479. |
|
[45] | Garcia, F.J., Rodriguez, S. G., Kalytta, A., & Reller, A. (2009). Study of natural halloysite from the Dragon Mine, Utah (USA Journal of inorganic and general chemistry, 635, 790-795. |
|
[46] | Komarneni, C., Fyfe, A., & and Kennedy, G. J. (1985). Order-disorder in 1:1 type clay minerals by solid-state 27a1 and 29Si magic-angle-spinning NMR spectroscopy. Clay minerals, 20, 327-334. |
|
[47] | Mellouk, S., Cherifi, S., Sassi, M., Marouf-Khelifa, K., Bengueddach, A., Schott, J., & Amine, K. (2009). Intercalation of halloysite from djebel Debagh (Algeria) and adsorption of copper ions. Applied Clay Science, 44 (3-4), 230-236. |
|
[48] | Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Isabelle, B., Jean-dominique, C., & Khelifa, A. (2013). Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 26-33. |
|
[49] | Etame, J., Gerard, M., Suh, C., & Bilong, P. (2009). Halloysite neoformation during the weathering of nephelinitic rocks under humid tropical conditions at Mt Etinde, Cameroon. Geoderma, 154 (1-2), 59-68. |
|
[50] | Levis, S. R., & Deasy, P. (2002). Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics, 243(1-2), 125-134. |
|
[51] | Alexander, L. (1943). Relationship of the clay minerals halloysite and endellite. American Mineralogist, 1-18. |
|
[52] | Leofanti, G., Padovan, M., Tozzolac, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219. |
|
[53] | Churchman, G. J., Davy, T. J., Aylmore, L. A., Gilkes, R. J., & Self, P. G. (1995). Characteristics of fine pores in some halloysites. Clay Minerals, 30 (2) 89-98. |
|
[54] | Wang, Q., Zhang, J., & Aiqin, W. (2013). Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface of halloysite for adsorption and released ofloxacin, 287, 54-61. |
|
[55] | Churchman, G. D., & Paynen, D. (1983). Mercury intrusion porosimetry of some New Zealand soils in relation to clay mineralogy and texture. Journal Soil Science, 24(3) 437-451. |
|
[56] | Sing, K., Everett, D., R.A.W, H., Moscow, L., & A, P. R. (1985). Reporting physisorption data for gas/solid system. Pure & Applied Chemistry, 57(4), 603-619. |
|
[57] | Peng, Q., Liu, M., Zheng, J., & Zhou, C. (2015). Adsoption of dyes in aqueous solutions by chitosan-halloysite nanotubes composite hydrogel beads. Microporous and Mesopourous Materials, 201,190-201. |
|
[58] | Lagergren, S., (1898). Vetenskapsakademiens. Handlingar Band 24 (4), 1-39. |
|
[59] | Ho, Y. S & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. |
|
[60] | Weber, W., & Morris, J. C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. Journal of the Sanitary Engineering Division American Society of Civil Engineers, 89, 53-61. |
|
[61] | Roginsky, S. Z., & Zeldovich, J. (1934). An equation for the kinetics of activated adsorption. Acta Physicochim (USSR), 554-559. |
|
[62] | Mclintock, I. S. (1967). The Elovich Equation in Chemisorption Kinetics. Nature, 2016, 1204-1205. |
|
[63] | Temkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica, USSR, 12, 327-356. |
|
[64] | Freundlich, H. (1906). Uber die adsorption in Losungen. Zeitschrift für Physikalische Chemie, 57, 385-470. |
|
[65] | Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403. |
|
[66] | Dubinin, M. M. (1966) in P.L. Walker (Ed.), Chemistry and Physics of Carbon, Vol. 2, Marcel Dekker, New York, p.51. |
|
[67] | Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., & He, H. (2013). Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 179, 89-98. |
|
[68] | Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268(1-3), 111-116. |
|
[69] | Atsahan, Ahmed Adnan (2014) Adsorption of methyl green dye onto bamboo in batch and continuous system, Iraqi Journal of Chemical and Petroleum Engineering, 15(1), 65-72. |
|
[70] | Alardhi, S. M., Albayati, T. M., & Alrubaye, J. M. (2020). Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column. Heliyon, 6(1), e03253. |
|
[71] | Hayward, D., & Trapnell, B. (1964). Chemisorption. London: Butterworth. |
|