American Journal of Nanomaterials
ISSN (Print): 2372-3114 ISSN (Online): 2372-3122 Website: http://www.sciepub.com/journal/ajn Editor-in-chief: Apply for this position
Open Access
Journal Browser
Go
American Journal of Nanomaterials. 2021, 9(1), 1-11
DOI: 10.12691/ajn-9-1-1
Open AccessArticle

Adsorption Studies of Aqueous Solutions of Methyl Green for Halloysite Nanotubes: Kinetics, Isotherms, and Thermodynamic Parameters

Y. M. Vargas-Rodríguez1, , A. Obaya1, J. E. García-Petronilo1, G. I. Vargas-Rodríguez1, A. Gómez-Cortés2, G. Tavizón3 and J. A. Chávez-Carvayar4

1Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán-Universidad Nacional Autónoma de México. Campo No. 1. Av. 1 de mayo, Sta. María Las Torres, Cuautitlán Izcalli. Estado de México. México. C.P. 54740

2Instituto de Física, Universidad Nacional Autónoma de México. Ciudad Universitaria. Coyoacán. C.P. 04510. México, D. F. México

3Facultad de Química, Universidad Nacional Autónoma de México. Ciudad Universitaria. Coyoacán. C.P. 04510. México, D. F. México

4Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Ciudad Universitaria. Coyoacán. C.P. 04510. México, D. F. México

Pub. Date: March 30, 2021

Cite this paper:
Y. M. Vargas-Rodríguez, A. Obaya, J. E. García-Petronilo, G. I. Vargas-Rodríguez, A. Gómez-Cortés, G. Tavizón and J. A. Chávez-Carvayar. Adsorption Studies of Aqueous Solutions of Methyl Green for Halloysite Nanotubes: Kinetics, Isotherms, and Thermodynamic Parameters. American Journal of Nanomaterials. 2021; 9(1):1-11. doi: 10.12691/ajn-9-1-1

Abstract

Halloysite nanotubes (HNTs) were used to successfully remove methyl green dye from water. The HNTs were also characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), 29Si and 27Al magic angle spinning nuclear magnetic resonance with magic angle spinning (MAS-NMR) and nitrogen adsorption at 77 K. SEM and TEM micrographs showed that HNTs have lengths of 0.2 to 1.5 μm, an outer diameter of 100 nm and lumen of 20 nm wide. X-ray diffraction patterns showed that the HNTs were totally dehydrated. HNTs may be regarded as a mesoporous material with a pore size distribution in the range of 1.5-150 Å and specific surface area of 34.49 m2•g-1. The adsorption kinetics and equilibrium data of the dye, initial dye concentration, temperature, pH and contact time effect on removal efficiency were also investigated. Pseudo-first-order, pseudo-second-order, intraparticle diffusion and Elrich models were evaluated in order to determine the rate parameters. The adsorption rate followed pseudo-second-order kinetic model. Adsorption revealed that methyl green was adsorbed as the Langmuir isotherm model describes and the maximum adsorption capacity of the HNTs was achieved (185 mg•g−1), being an efficient adsorbent for methyl green adsorption.

Keywords:
halloysite nanotubes methyl green adsorption Kinetic thermodynamic

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

References:

[1]  Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 177(1-3), 70-80.
 
[2]  Noroozi, B., & Sorial, G. (2013). Applicable models for multi-component adsorption of dyes: a review. J. Environ. Sci., 25(12), 419-429.
 
[3]  Solís, M., Solís, A., Pérez, H., Manjarrez, N., & Flores, M. (2012). Microbial decoulorization of azo dyes: a review. Process. Biochem., 47(12), 1723-1748.
 
[4]  Huang, W., Zhang, Z., Han, X., Tang, J., Wang, J., Dong, S., & Wang, E. (2003). Liposome-mediated conformation transition of DNA detected by molecular probe: methyl green. Biolectrochemistry, 59(1), 21-27.
 
[5]  Li, Q. L., Wang, Y., Sun, Z., Guo, F., & Zhu, J. (2014). Methyl green and nitrotetrazolium blue chloride co-expression in colon tissue; A hyperspectral microscopic imaging analyses. Optics & Laser Technology, 64, 337-342.
 
[6]  Rytwo, G., Tropp, D., & Serban, C. (2002). Adsorption of diquat, paraquat and methyl green on sepiolite. Applied Clay Science, 20(6), 273-282.
 
[7]  Vijayalaskshmidevi, S., & Muthukumar, K. (2015). Improved biodegradation of textile dye effluent by coculture. Ecotoxicology and Environmental Safety, 114, 23-30.
 
[8]  Rai, H. S., & Singh, J. E. (2005). Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit. Rev. Environ.Sci. Technol., 35 (3), 219-238.
 
[9]  Almeida, E. J., & Corso, C. R. (2014). Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere, 112, 317-322.
 
[10]  Niebischa, C. H., Alexandre Knoll Malinowski, A. K., Schadeck, R., & Mitchell, D. A. (2010). Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. Journal of Hazardous Materials, 180(1-3), 316-322.
 
[11]  Bautista, P., Mohedano A.F., Menéndez, Casas J.A. & Rodriguez, J.J. (2010). Catalytic wet peroxide oxidation of cosmetics wastewaters with Fe-bearing catalyst. Catalysis Today, 151(1-2), 148-152.
 
[12]  Vilar, V. J., Pinho, L. X., Pintor, A. M., & Boaventura, R. A. (2011). Treatment of textile wastewaters by solar-driven advanced oxidation processes. Solar Energy, 85(9), 1927-1934.
 
[13]  Bautista, P., Mohedano, A. F., Gilarranz, M. A., Casas, J. A., & Rodríguez, J. J. (2007). Application of Fenton oxidation to cosmetics wastewaters treatment. Journal of Hazardous Materials, 143(1-2), 128-134.
 
[14]  Saygili, H., Güzel, F., & Önal, Y. (2015). Conversion of grape industrial processing waste to activated carbon sorbent and its performance in cationic and anionic dyes adsorption. Journal of Cleaner Production, 93, 84-93.
 
[15]  Bansal, R., & Goyal, M. (2005). Activated carbon adsorption. Boca Raton: Taylor & Francis.
 
[16]  Bandosz, T. J. (2006). Activated Carbon Surfaces in Environmental Remediation. New York: Elsevier.
 
[17]  Aboua, K. N., Yobouet, Y. A., Yao, K. B., Goné, D. L., & Trokourey, A. (2015). Investigation of dye adsorption onto activated carbon from the shells of Macoré fruit. Journal of Environmental Management, 156, 10-14.
 
[18]  Panic, V. V., & Velickovic, S. J. (2014). Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: Kinetics, equilibrium study and image analysis. Separation and Purification Technology, 122, 384-394.
 
[19]  Alver, E., & Metin, Ü. A. (2012). Anionic dye removal from aqueous solutions using modified zeolite: Adsorption kinetics and isotherm studies. Chemical Engineering Journal, 200-202, 59-67.
 
[20]  Wang, C., Li, J., Lianjun, W., Sun, X., & Huang, J. (2009). Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chinese Journal of Chemical Engineering, 17(3), 513-521.
 
[21]  Jin, X., Yu, B., Chen, Z., Arocena, J. M., & Thring, R. W. (2014). Adsorption of Orange II dye in aqueous solution onto surfactant-coated zeolite: Characterization, kinetic and thermodynamic studies. Journal of Colloid and Interface Science, 435, 15-20.
 
[22]  Yahyaei, B., & Azizian, S. (2014). Rapid adsorption of binary dye pollutants onto the nanostructred mesoporous alumina. Journal of Molecular Liquids, 199, 88-95.
 
[23]  Zolgharnein, J., Bagtash, M., & Shariatmanesh, T. (2015). Simultaneous removal of binary mixture of Brilliant Green and Crystal Violet using derivative spectrophotometric determination, multivariate optimization and adsorption characterization of dyes on surfactant modified nano-γ-alumina. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 1016-1028.
 
[24]  Javadian, H., Angaji, M. T., & M, N. (2014). Synthesis and characterization of polyaniline/γ-alumina nanocomposite: A comparative study for the adsorption of three different anionic dyes. Journal of Industrial and Engineering Chemistry, 20(5), 3890-3900.
 
[25]  Liu, G., & Yang, R. L. (2010). Liquid adsorption of basic dye using silica aerogels with different textural properties. Journal of Non-Crystalline Solids, 356(4-5), 250-257.
 
[26]  Krysztafkiewicz, A., Binkowski, S., & Jesionowski, T. (2002). Adsorption of dyes on a silica surface. Applied Surface Science, 199(1-4), 31-39.
 
[27]  Errais, E., Duplay, J., Elhabiri, M., Khodja, M., Ocampo, R., Baltenweck-Guyot, R., & Darragi, F. (2012). Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 403, 69-78.
 
[28]  Miyamoto, N., Kawai, R., Kuroda, K., & Ogawa, M. (2000). Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. Applied Clay Science, 16, 161-170.
 
[29]  Lagaly, G., Ogawa, M., & Dékány, I. (2013). Chapter 10.3 - Clay Mineral-Organic Interactions. Developments in Clay Science, 5, 215-225.
 
[30]  El Mouzdahir, Y., Elmchaouri, A., Mahboub, R., Gil, A., & Korili, S.A. (2010). Equilibrium modeling for the adsorption of methylene blue from aqueous solutions on activated clay minerals. Desalination, 250(1), 335-338.
 
[31]  Yuan, G., Theng, B., Churchman, G., & Gates, W. (2013). Clays and Clay Minerals for Pollution Control. Developments in Clay Science (pp 587-644). Amsterdam: Elsevier.
 
[32]  Hendricks, S. A. & Jefferson, M. E. (1938). Structure of kaolin and talc-pirophilite hydrates and their bearing on water sorption of clays. American Mineralogist, 23(12) 863-875.
 
[33]  Joussein, E., Petit, S., Churchman, J., Theng, B., Rughi, D., & Delvaux. (2005). Halloysite clay minerals: a review. Clay Minerals, 40, 383-426.
 
[34]  Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44(5), 1489-1497.
 
[35]  Zhao, M., & Peng, L. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. Adsorption Microporous and Mesoporous Materials, 112(1-3), 419-424.
 
[36]  Kiani, G., Dostali, M., Rostami, A., & Khataee, A. R. (2011). Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. Applied Clay Science, 54(1), 34-39.
 
[37]  Zhao, Z., Abdullayev, E., Vasiliev, A., & Lvov, Y. (2013). Halloysite nanotubule clay for efficient water purification. Journal of Colloid and Interface Science, 406, 121-129.
 
[38]  Margulies, L., & Rozen, H. (1986). Adsorption of methyl green on montmorillonite. Journal of Molecular Structure, 141, 219-226.
 
[39]  Rytwo, G., Nir, S., Crespin, M., & Margulies, L. (2000). Adsorption and Interactions of Methyl with Montmorillonite ans Sepiolite. Journal of Colloid and Interface Science, 222(1)12-19.
 
[40]  dos Reis, L. G., Robaina, N. F., Pacheco, W. F., & Cassella, R. J. (2011). Separation of malachite green and methyl green cationic dyes from aqueous medium by adsorption on Amberlite XAD-2 and XAD-4 resins using sodium dodecyl sulfate as carrier. Chemical Engineering Journal, 171 (2) 532-540.
 
[41]  Farghali, A. A., Bahgat, M., El Rouby, W. M. A., & Khedr, M. H. (2013). Preparation, decoration and characterization of graphene sheets for methyl green adsorption. Journal of Alloys and Compounds, 555, 193-200.
 
[42]  Sharmaa, P., Saikiab, B. K., & Dasa, M. R. (2014). Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: Kinetics, isotherms and thermodynamic parameters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 125-123.
 
[43]  Brindley G.W. (1980) Order-disorder in the clay mineral structures. p. 125-196 in: Crystal Structures of Clay Minerals and their X-ray Identification (G.W. Brindley & G. Brown, editors). Mineralogical Society, London.
 
[44]  Nicolini, K., Fukamachi, C., Wypych, F., & Mangrich, A. (2009). Dehydrated halloysite intercalated mechanochemically with urea: thermal behavior and structural aspects. Journal Colloid Interface Science, 338(2), 474-479.
 
[45]  Garcia, F.J., Rodriguez, S. G., Kalytta, A., & Reller, A. (2009). Study of natural halloysite from the Dragon Mine, Utah (USA Journal of inorganic and general chemistry, 635, 790-795.
 
[46]  Komarneni, C., Fyfe, A., & and Kennedy, G. J. (1985). Order-disorder in 1:1 type clay minerals by solid-state 27a1 and 29Si magic-angle-spinning NMR spectroscopy. Clay minerals, 20, 327-334.
 
[47]  Mellouk, S., Cherifi, S., Sassi, M., Marouf-Khelifa, K., Bengueddach, A., Schott, J., & Amine, K. (2009). Intercalation of halloysite from djebel Debagh (Algeria) and adsorption of copper ions. Applied Clay Science, 44 (3-4), 230-236.
 
[48]  Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Isabelle, B., Jean-dominique, C., & Khelifa, A. (2013). Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 26-33.
 
[49]  Etame, J., Gerard, M., Suh, C., & Bilong, P. (2009). Halloysite neoformation during the weathering of nephelinitic rocks under humid tropical conditions at Mt Etinde, Cameroon. Geoderma, 154 (1-2), 59-68.
 
[50]  Levis, S. R., & Deasy, P. (2002). Characterisation of halloysite for use as a microtubular drug delivery system. International Journal of Pharmaceutics, 243(1-2), 125-134.
 
[51]  Alexander, L. (1943). Relationship of the clay minerals halloysite and endellite. American Mineralogist, 1-18.
 
[52]  Leofanti, G., Padovan, M., Tozzolac, G., & Venturelli, B. (1998). Surface area and pore texture of catalysts. Catalysis Today, 41, 207-219.
 
[53]  Churchman, G. J., Davy, T. J., Aylmore, L. A., Gilkes, R. J., & Self, P. G. (1995). Characteristics of fine pores in some halloysites. Clay Minerals, 30 (2) 89-98.
 
[54]  Wang, Q., Zhang, J., & Aiqin, W. (2013). Alkali activation of halloysite for adsorption and release of ofloxacin. Applied Surface of halloysite for adsorption and released ofloxacin, 287, 54-61.
 
[55]  Churchman, G. D., & Paynen, D. (1983). Mercury intrusion porosimetry of some New Zealand soils in relation to clay mineralogy and texture. Journal Soil Science, 24(3) 437-451.
 
[56]  Sing, K., Everett, D., R.A.W, H., Moscow, L., & A, P. R. (1985). Reporting physisorption data for gas/solid system. Pure & Applied Chemistry, 57(4), 603-619.
 
[57]  Peng, Q., Liu, M., Zheng, J., & Zhou, C. (2015). Adsoption of dyes in aqueous solutions by chitosan-halloysite nanotubes composite hydrogel beads. Microporous and Mesopourous Materials, 201,190-201.
 
[58]  Lagergren, S., (1898). Vetenskapsakademiens. Handlingar Band 24 (4), 1-39.
 
[59]  Ho, Y. S & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465.
 
[60]  Weber, W., & Morris, J. C. (1963). Intraparticle diffusion during the sorption of surfactants onto activated carbon. Journal of the Sanitary Engineering Division American Society of Civil Engineers, 89, 53-61.
 
[61]  Roginsky, S. Z., & Zeldovich, J. (1934). An equation for the kinetics of activated adsorption. Acta Physicochim (USSR), 554-559.
 
[62]  Mclintock, I. S. (1967). The Elovich Equation in Chemisorption Kinetics. Nature, 2016, 1204-1205.
 
[63]  Temkin, M., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica, USSR, 12, 327-356.
 
[64]  Freundlich, H. (1906). Uber die adsorption in Losungen. Zeitschrift für Physikalische Chemie, 57, 385-470.
 
[65]  Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
 
[66]  Dubinin, M. M. (1966) in P.L. Walker (Ed.), Chemistry and Physics of Carbon, Vol. 2, Marcel Dekker, New York, p.51.
 
[67]  Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H., & He, H. (2013). Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 179, 89-98.
 
[68]  Liu, R., Zhang, B., Mei, D., Zhang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. Desalination, 268(1-3), 111-116.
 
[69]  Atsahan, Ahmed Adnan (2014) Adsorption of methyl green dye onto bamboo in batch and continuous system, Iraqi Journal of Chemical and Petroleum Engineering, 15(1), 65-72.
 
[70]  Alardhi, S. M., Albayati, T. M., & Alrubaye, J. M. (2020). Adsorption of the methyl green dye pollutant from aqueous solution using mesoporous materials MCM-41 in a fixed-bed column. Heliyon, 6(1), e03253.
 
[71]  Hayward, D., & Trapnell, B. (1964). Chemisorption. London: Butterworth.